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Abstract. Expansion of the matrix elements of SU(3) and uq (3) canonical tensor operators
in terms of the bi-orthogonal coupling coefficients and overlaps of the Draayer–Akiyama
construction are considered. Special bi-orthogonal extremal isoscalar factors (with subscripts
as multiplicity labels and proportional toq-Racah (q-6j ) coefficients or the generalized
Wilson–Rahman rational bi-orthogonal functions in terms of balanced4F3(1) or 4φ3(q)

hypergeometric series) are used as a natural basis for extremal matrix elements of the highest
weight component of the canonical tensor operators of SU(3) in the generating function approach
of Biedenharn, Lohe and Louck. The expansion that is obtained (triple sum), together with
previously derived asymmetric seed isofactors and elementary overlaps, gives the explicit overlap
coefficients and can be used to derive SU(3) and uq (3) canonical tensor operators as well as
new explicit normalized seed isofactors with Regge-type symmetry, specified for the minimal
null space case.

1. Introduction

The importance of coupling coefficients and irreducible tensor operators of unitary groups
for physical applications is well known. Many analytical solutions of the coupling problem
for the SU(3) and SU(n) groups (including multiply occurring irreducible representations
(irreps) in the coproduct decomposition) with non-orthogonal coupling (Clebsch–Gordan
or Wigner) coefficients have been proposed. These results have been derived by means
of an integration over the group [1], projection operator methods [2–4], and recursive-
recoupling techniques [5–12] (including the construction of explicit bi-orthogonal systems
[9–11]) or by using different generating invariants [13–15] as well as vector-coherent-states
techniques [16]. Some of the methods have been extended to the quantum groups uq(n) [17],
particularly to uq(3) [18], with the bi-orthogonal coupling coefficients (isoscalar factors) of
the quantum groups expressed as sums involving multiplicity free coupling coefficients [19].

Nevertheless, the SU(3) canonical tensor operator concept of Biedenharn, Louck
and their collaborators [20–23] has not lost its attractiveness, especially for numerical
applications [24]. However, the rather complicated generating and denominator function
technique of this approach [22, 23] cannot be easily extended from SU(3) to uq(3), and
explicit analytical expressions are still only available for the case of a canonical tensor
operator of rank (1 1) [25] and for some extremal matrix elements of tensor operators
(with maximal or minimal null spaces) and the corresponding orthonormal canonical
isoscalar factors (isofactors) of SU(3) [26] and uq(3) [18, 27]. Unfortunately, a conjecture
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[26] concerning the possibility of a straightforward construction of the orthogonal SU(3)
canonical tensor operators for non-extremal values of the multiplicity label has not been
confirmed [27], so the general orthonormalization problem for the Draayer–Akiyama [24]
construction remains unsolved analytically.

The concept of bi-orthogonal systems (Ališauskas [11, 17, 18]) not only leads to
analytical expressions with minimal total number of summation parameters (which in the
SU(3) or uq(3) case never exceeds 6) but also brings a systematic approach to the coupling
problem and allows one to reduce the global coupling coefficients to their expansion
[10, 11, 19, 28] in terms of specific boundary (seed) isofactors (cf also [4, 16, 29]) in analogy
with the construction of stretched SU(3) ⊃ SO(3) basis states [30]. Ališauskas [31, 32]
presented the boundary (seed) isofactors (with highest-weight or lowest-weight values of
definite states) for orthonormal (paracanonical and pseudocanonical) couplings in SU(3).
The corresponding seed isofactors of uq(3) can be derived by means of a self-consistent
Gram–Schmidt procedure in terms of Gram determinants (cf [11, 12]) formed by overlaps
[18] of the coupled states. (These overlaps are equivalent to some bilinear combinations
of isofactors. Note that in [12] a similar procedure for overlaps, equivalent to some SU(3)
seed recoupling coefficients, is used.)

Definite symmetric and asymmetric seed isofactors are expressed, for the maximal null
space of the canonical tensor operators of uq(3), as single sums in section 5 of [18] (cf [33]
for a triple-sum formulation) when the asymmetric seed isofactors are extended to a double
sum [18] for the general case of the non-orthonormalized [24, 26] construction. Although
the structure of symmetric seed isofactors was predicted for the maximal null space of the
canonical tensor operators of SU(3) as (20) of [24], the correlation of their structure with
defining relations of the canonical tensor operators [22] in the generic multiplicity label
case is not transparent. Indeed the compositions of two other types of seed isofactors,
(3.9) or (3.12) of [27] (with the maximal isospin states appearing in different positions and
hence correlated with canonical splitting condition [22]), were used for the elimination of
indefinite 0/0 solutions of the normalization problem (cf (3.7) and (3.14) of [27]) for the
canonical SU(3) and uq(3) isofactors with maximal null space. However, a general solution
of the system of equations given in (2.13) of [27] is only possible under specific restrictions
(see section 4 of [27] where some inconsistencies of numerically distinctive conditions are
discussed) and is not directly correlated with the general null space approach to canonical
tensor operators [20–23] induced by a polynomial structure of their reduced matrix elements.

In fact, overlaps for the Draayer–Akiyama [24, 26] construction for uq(3) can be ex-
panded by means of asymmetric seed isofactors, (5.18) of [18], in terms of overlaps, (3.24)
of [18], of dual coupled superscript states, using some symmetry properties of overlaps if
necessary. Unfortunately, the analytic regions of these functions are usually mutually exclu-
sive, although under specific restrictions the overlaps, (3.6) of [11], in terms of a (non-very)
well-poised series (or theirq-version [17]) may be more usable. Unlike the case of dual cou-
pled states (for which the analyticity is interrupted by the appearance of superfluous states),
the overlaps of the coupled subscript states are analytical in all regions of the parameter
space, but the labels for expansions in terms of subscript states are not simply correlated
with the values of the usual seed isofactors. Furthermore, some corresponding elementary
expansion coefficients have been derived [18] in different regions by different methods.

In this paper the approach of Biedenharnet al [22] is extended to an alternative class
of boundary isofactors for SU(3) and uq(3). Recall that Biedenharnet al used (as their
main tool for constructing the complete set of the denominator functions) the distinctive
polynomial properties of the numerator function of the extremal reduced matrix element of
the highest-weight component of the unit SU(3) canonical tensor operator (projective tensor
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operator (2.5a) of [22] or isofactors)

〈aby i ′ + i ′′0 ||T (a
′′b′′)t

y ′′0 i
′′
0
||a′b′y ′i ′〉 = (a′b′y ′i ′; a′′b′′y ′′0 i ′′0 ||t; aby i ′ + i ′′0) (1.1)

of the multiplicityM with canonical multiplicity labelt . In (1.1), numerator polynomials
of degreeM− t in terms ofi ′+z′ appear which are independent ofi ′−z′. Here and in what
follows we use the same notation for irreps and basis states of SU(3) and uq(3) as was used
in [11, 18, 26, 27] with (ab) for mixed tensor irreps,a = m13−m23, b = m23−m33 where
[m13, m23, m33] is a partition andmij are the Gelfand–Tsetlin parameters. The basis states
are labelled by the hyperchargey = m12+m22− 2

3(m13+m23+m33) (or z = 1
3(b−a)− 1

2y),
the isospini = 1

2(m12−m22) and its projectioniz = m11− 1
2(m12+m22). The parameterz

(or j = 1
2b−z [3, 16]) is frequently more convenient in explicit expressions thany, because

linear combinationsi ± z > 0, a + z − i > 0, b − z − i > 0 are integers and in many
situations we can avoid inconvenient fractions. For the state with irrep (ab) in the coproduct
(a′b′)⊗(a′′b′′) decomposition,z = z′+z′′+v, where againv = 1

3(a
′−b′+a′′−b′′−a+b) is an

integer. The parameters of the highest weight state (HWS) take on the valuesy0 = 1
3(a+2b),

i0 = 1
2a = −z0, while for the lowest weight state (LWS)y0 = − 1

3(2a + b), i0 = 1
2b = z0

and for the maximal isospin state (MIS)ym = 1
3(a − b), im = 1

2(a + b), zm = 1
2(b − a).

The multiplicityM of the tensor operatorsT a
′′b′′t

y ′′0 i
′′
0 i
′′
z

with fixed shiftsa − a′ andb − b′ may

exceed the multiplicityr of irrep (ab) in the (a′b′) ⊗ (a′′b′′) decomposition (see [18, 27])
and the lowest values of the canonical multiplicity labelt may be eliminated by the null
space inclusion property [22].

We doubt whether the cumbersome generating function technique of [22] based on
polynomial properties of (1.1) can be extended straightforwardly to uq(3). Nevertheless, the
modified [26] Draayer–Akiyama [24] construction and explicit expressions of the extremal
canonical isofactors [18, 27] insures an analytically distinctiveq-polynomial structure for
the reduced matrix elements

〈aby i ′ + i ′′0 ||T̃ (a
′′b′′)t,q

y ′′0 i
′′
0
||a′b′y ′i ′〉q (1.2)

of the uq(3) twisted [34] tensor operators

T̃
(a′′b′′)t=k+1,q
y ′′i ′′i ′′z

= [T (k k)t,qT (a
′′−k,b′′−k)1,q ](a

′′b′′)q
y ′′i ′′i ′′z

(1.3)

which are derived by means of the stretched [19] coupling of the auxillary canonical
tensor operators. OperatorT (a

′′−k,b′′−k)1,q
y1j1m1

with maximal null space in (1.3) insures the
full shifts of the uq(3) irrep parameters and the null space inclusion property of the uq(3)
canonical tensor operators (after eliminating the superfluous tensor operators by means of
the orthogonalization process of (1.3) starting from the maximum value oft), when the
self-adjoint canonical tensor operatorsT (k k)t,qy2j2m2

have minimal null space [18] and give trivial
(zero) shift of the uq(3) irrep parameters, as well as zero shift of the uq(2) irreps for maximal
value ofj2 = k = t − 1.

In this paper we exploit the rather simple algebraic structure of extremal isofactors,
related to the right-hand side of (1.2), but with a multiplicity labelling of a different kind. In
section 2 a natural basis for extremal matrix elements in terms of the bi-orthogonal extremal
isofactors(a′b′y ′i ′; a′′b′′y ′′0 i ′′0 ||+,j̃ ′′,+; aby i ′ + i ′′0)q with subscript is proposed. (Here and in
what follows the+ and− signs and their positions in the multiplicity labels (subscripts)
+, j̃ ′′,+; −,+, J̃ or Ĩ ′,−,− indicate the signs and positions of the extremalz′, z or
z′′, that is, the LWS and HWS in the corresponding isofactor.) These special isofactors
are also proportional to definiteq-Racah (q-6j ) coefficients as well as to the generalized
Wilson–Rahman [35] rational bi-orthogonal functions in terms of balanced4F3(1) or 4φ3(q)
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basic hypergeometric series. Hence the expansion may be inverted. In section 3 the
composition of (1.2) and the above-mentioned inverse expansion is considered. After
a rearrangement of the single and multiple sums we find an explicit expansion of the
matrix elements〈aby i ′ + i ′′0 ||T̃ (a

′′b′′)t,q
y ′′0 i
′′
0
||a′b′y ′i ′〉q by means of a triple sum in terms of

isofactors (a′b′y ′i ′; a′′b′′y ′′0 i ′′0 ||+,j̃ ′′,+; aby i ′ + i ′′0)q . Finally, overlap coefficients for the

non-orthonormal tensor operators̃T (a
′′b′′)t=k+1,q

y ′′i ′′i ′′z
, which are uq(3) or SU(3) unit canonical

tensor operatorsT (k k)t,qy2j2m2
after a Gram–Schmidt procedure, are given. In section 4, these

results are specified for explicit normalized boundary isofactors with the multiplicity label
corresponding to the minimal null space case. These extremal seed isofactors are presented
in terms of3φ2(q) or 3F2(1) series, with the normalization function in terms of the double
sum related to aq-extension of the denominator polynomial [23] of the SU(3) canonical
tensor operators.

2. Rahman’s bi-orthogonal functions and alternative expansion of bi-orthogonal
coupling coefficients

We use the Cartan–Weyl generatorsEik (i, j, k= 1, 2, 3) of the unitary quantum algebra
uq(3) = Uq(u(3)), with generic q and composite generators expressed in terms of
q-deformed commutators, which satisfy the commutation relations [19, 27] and the
corresponding coproduct expansion rules. Here and in what follows [x] and [x]! are,
respectively, theq-numbers andq-factorials,

[x] = (qx − q−x)/(q − q−1) [x]! = [x][x − 1] . . . [2][1]

(α|q)n =
n−1∏
k=0

[α + k] [1]! = [0]! = (α|q)0 = 1 (2.1)

which are invariant under substitutionq ↔ q−1.
Perhaps the simplest expression (without sums) is for the isofactors

(a′b′y ′i ′; a′′b′′y ′′0 i ′′0 ||ρ; aby i ′ + i ′′0)q
with multiplicity label of the superscriptρ ≡ −,+, J̃ type. These particular coefficients
can be derived (applying isofactor symmetry) by means of (4.6) of [17]. The expansion
problem in terms of such superscript isofactors is solved [18] by the usual seed isofactor
technique. For an alternative expansion, we first rearrange the bi-orthogonal isofactors

(a′b′y ′i ′; a′′b′′y ′′ i ′ + 1
2a||−,+,J̃ ; aby0i0)q

=
∑
Ĩ ′
(η−,+,J̃ |ηĨ ′,−,−)q(a′b′y ′i ′; a′′b′′y ′′ i ′ + 1

2a||Ĩ
′,−,−; aby0i0)q (2.2)

expanding the right-hand side isofactor (expressed in terms of stretchedq-6j coefficients—
(4.6) of [17]) by means of the overlap matrix(η−,+,J̃ |ηĨ ′,−,−)q (given in terms of a balanced
5F4(q) hypergeometric series—(3.7) of [18])†. Using a new version (cf (3.6) of [18]) of the

† Note that in (3.21a) of [18] the signs ofA′1, A′2 and A′3 in the upper entries of5F4(q, 1) should be the
opposite of what is given; the definitions ofA′3 in (3.21b) andp′5 in (3.25) should be corrected (by+1 and−1,
respectively); the bottom entry−N1 − B of 5F4 in (3.22b) should be changed to−N1 − B + 1; the first factors
in (4.15a) and (4.15b) should be replaced byq(a−b)(k+2); parameterv should be omitted on the right-hand side
of (5.5); an additional phase factor(−1)a

′+a′′−a+v should be included on the right-hand side of (5.11) and appear
instead of(−1)v on the right-hand side of (5.14) where theq-exponent parametera′′ also should be replaced by
a; (a′ + a′′ + a − v) should be replaced by (a′ + a′′ − a − v) in (5.13) and (5.16), with the opposite signs of the
termsbv and Ĩ ′′(Ĩ ′′ + 1) in (5.16).
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summation formula (cf (2.4.2) of [36]) of a special very well-poised basic hypergeometric
series6φ5 (or 5F4),∑
j

[2j + 1][j − p1− 1]!(−1)p1+j+1

[p1+ j + 1]![p2− j ]![p2+ j + 1]![p3− j ]![p3+ j + 1]![p4− j ]![p4+ j + 1]!

= [p1+ p2+ p3+ p4+ 2]!∏
16k<n64[pk + pn + 1]!

(2.3)

we obtain an expression for (2.2) as a single sum in terms of a balanced4F3(q) or 4φ3

hypergeometric series. After using the isofactor symmetries, a natural basis for extremal
uq(3) and SU(3) tensor operators can be given in terms of the biorthogonal isofactors with
subscript+, j̃ ′′,+ correlated with the LWS of the first and resulting irreps:

(ζi ′+z′ |η+,j̃ ′′,+)q = (a′b′y ′i ′; a′′b′′y ′′0 i ′′0 ||+,j̃ ′′,+; aby i ′ + i ′′0)q
=
∑
t

(a′b′y ′0i
′
0; a′′b′′ỹ ′′j̃ ′′||t; aby0 i0)q(a

′b′y ′i ′; a′′b′′y ′′0 i ′′0 ||t; aby i ′ + i ′′0)q

= ([b − z− i]![ b − z+ i + 1]![ i + z]![ i − z]!)1/2
[a′ + a′′ − v + 1]!∇[ 1

2b
′ − z′, 1

2b
′, i ′]

× ([2j̃ ′′ + 1][j̃ ′′ − z̃′′]!)1/2qQ̃+R̃W
([j̃ ′′ + z̃′′]!)1/2∇[ 1

2b,
1
2b
′, j̃ ′′]H [a′′b′′j̃ ′′z̃′′]

×
∑
s

(−1)v+s [j̃ ′′ + z̃′′ + s]![ b′ + v − s]![ a′ + a′′ + z′ + i ′ − s + 1]!

[s]![ j̃ ′′ − z̃′′ − s]![−v + s]![ i + z− s]![ a′ + a′′ + b − v − s + 2]!

(2.4)

wherez̃′′ = 1
2(b − b′)− v, i + z = i ′ + z′ + v,

z̃′ = 1
2(a
′′ − a)− v z̃ = 1

2(b
′′ − a′)+ v)

and

W = [a + 1][a + b + 2]([b + 1][a]![ a + b + 1]![a′]![ a′ + b′ + 1]!)1/2

×
(

[2i ′ + 1]![a′ + z′ − i ′]![ a′′]![ b′′]![ a′′ + b′′ + 1]!

[2i + 1]![a′ + z′ + i ′ + 1]![a + z− i]![ a + z+ i + 1]!

)1/2

(2.5)

∇[abc] =
(

[a + b − c]![ a − b + c]![ a + b + c + 1]!

[b + c − a]!

)1/2

(2.6)

H [abiz] = ([a + z− i]![ a + z+ i + 1]![b − z− i]![ b − z+ i + 1]!)1/2 (2.7)

Q̃ = Q1(b
′a′aba′′b′′; j̃ ′′z̃′′)+ 1

2 z̃
′(3z̃′ + 2a′ − 2b′)+ 1

8(a
2− a′′2)− 1

2a
′b′ − b′

+ 1
2(a + b − 3a′ − a′′ − b′′) (2.8)

R̃ = 1
2(a + 2z)( 1

2a
′′ + b′′)− 1

2a
′′i ′ (2.9)

Q1(a
′b′a′′b′′a b; J̃ z̃) = Q1(b

′′a′′b′a′b a; J̃ ,−z̃) = 1
2{J̃ (J̃ + 1)

+z̃(3z̃+ 2a − 2b)− ab + 1
2(a
′ + b′′)+ a′′ + b′ − a − b}. (2.10)

Using the notation [37]

p+1Fp

[
α1, α2, . . . , αp+1

β1, . . . , βp
; q, x

]
=
∞∑
k

(α1|q)k(α2|q)k . . . (αp+1|q)k
(β1|q)k . . . (βp|q)k(q|q)k xk (2.11)
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(with x = q±(c+1), c = −1 for the balanced series) instead of the standard definition [36]

p+1φp

[
qα1, qα2, . . . , qαp+1

qβ1, . . . , qβp
; q, z

]
= p+1Fp

[
α1, α2, . . . , αp+1

β1, . . . , βp
; q1/2, q(c−1)/2z

]
(2.12)

we see that the sum on the right-hand side of (2.4) corresponds to a balanced4φ3 basic (or
4F3(1) classical) hypergeometric series and is proportional to the balanced series

4F3

[−j̃ ′′ + z̃′′, j̃ ′′ + z̃′′ + 1,−i − z,−a′ − a′′ − b + v − 2

−b′ − v,−v + 1,−a′ − a′′ − i ′ − z′ − 1
; q, 1

]
(2.13)

or to theq-6j coefficients{ 1
2b
′ 1

2b

1
2(a
′ + a′′ + i ′ + z′ + 1) 1

2(a + b′′ + v + i ′ + z′ + 1)

j̃ ′′
1
2(a
′ + a′′ + b − i ′ − z′ + 1)− v

}
q

(2.14)

with j̃ ′′ − z̃′′ and i ′ + z′ appearing instead of the matrix indices of the generalized
Wilson–Rahman [35] bi-orthogonal functionsR(2)n [x] and S(2)n [x] in terms of the balanced
(basic) 4F3 or 4φ3 hypergeometric functions. We note that the appearance of the second
matrix indices on the top and bottom rows of (2.13) is rather unusual for Racah coefficients.

In accordance with [35], the dual function appearing in this case is proportional to the
balanced series

4F3

[−j̃ ′′ + z̃′′, j̃ ′′ + z̃′′ + 1,−b′ + z′ + i ′, a + b′′ + v + 3

−b′ − v, b − b′ − v + 1, a + b′′ + i + z+ 4
; q, 1

]
. (2.15)

For proof of the bi-orthogonality in the generalq case we may use the relationship∑
i ′+z′=i+z−v

∑
s,s ′

(−1)s [j̃ ′′ + z̃′′ + s]![ b′ + v − s]![ a′ + a′′ + z′ + i ′ − s + 1]![ i ′ + z′]!
[s]![ j̃ ′′ − z̃′′ − s]![−v + s]![ i + z− s]![ a′ + a′′ + b − v − s + 2]!

× (−1)s
′
[Ĩ ′′ + z̃′′ + s ′]![ b′ + v − s ′]![ a + b′′ + v + s ′ + 2]!

[s ′]![ Ĩ ′′ − z̃′′ − s ′]![ b − b′ − v + s ′]![ b′ − z′ − i ′ − s ′]!
× [b − z− i]![ a + b′ + b′′ + v + 3]!

[a + b′′ + i + z+ s ′ + 3]![a′ + a′′ − v + 1]!

= (−1)j̃
′′−z̃′′δj̃ ′′,Ĩ ′′

[j̃ ′′ + z̃′′]![ 1
2(b + b′)− j̃ ′′]![ 1

2(b + b′)+ j̃ ′′ + 1]!

[2j̃ ′′ + 1][j̃ ′′ − z̃′′]! . (2.16)

The sum overi ′ + z′ = i + z − v is summable in terms of a balanced3φ2 (or 3F2(1))
hypergeometric series, with the remaining sums also turning into a balanced3φ2 form.

This bi-orthogonality relation may be reformulated for the usualq-6j coefficients
[38, 39]:∑
x

{
a b e

1
2x + k 1

2x r − 1
2x

}
q

{
a b e′

1
2(x + 1)+ k 1

2(x + 1) r − 1
2(x − 1)

}
q

×
(

[2e + 1][2e′ + 1][a − b + e]![ b + e′ − a]!

[b + e − a]![ a − b + e′]!

× [k − e + x]![ k + e + x + 1]!

[k − e′ + x + 1]![k + e′ + x + 2]!

)1/2

= −δee′([r − a + 1][a + r + 2][r + k − b + 1][b + r + k + 2])−1/2 (2.17)
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with the dual relation written as follows:∑
e

[2e + 1]

{
a b e

d c f

}
q

{
a b e

d ′ c′ f ′

}
q

(
[d + c − e]![ d + c + e + 1]!

[d ′ + c′ − e′]![ d ′ + c′ + e + 1]!

)1/2

= −δd,d ′−1/2([c
′ + f ′ − a][c′ + f ′ + a + 1]

×[d ′ + f ′ − b][d ′ + f ′ + b + 1])−1/2 (2.18)

wherec − c′ = d − d ′ = f ′ − f .
Now using the same notation (2.5)–(2.9), the matrix for the inverse expansion in terms

of the coupled states|η+,j̃ ′′,+)q may be expressed as follows:

(η+,j̃
′′,+|ζ i ′+z′)q = (−1)(b

′−b)/2+j̃ ′′ [a + b′ + b′′ + v + 3]!H [a′′b′′j̃ ′′z̃′′]

× ([b
′ − z′ − i ′]![ b′ − z′ + i ′ + 1]![ i ′ + z′]![ i ′ − z′]![2 j̃ ′′ + 1][j̃ ′′ − z̃′′]!)1/2

qQ̃+R̃W∇[ 1
2b
′, ] 1

2b, j̃
′′]∇[i, 1

2b − z, 1
2b]([j̃ ′′ + z̃′′]!)1/2

×
∑
s ′

(−1)s
′
[j̃ ′′ + z̃′′ + s ′]![ b′ + v − s ′]!

[s ′]![ j̃ ′′ − z̃′′ − s ′]![ b − b′ − v + s ′]![ b′ − z′ − i ′ − s ′]!
× [a + b′′ + v + s ′ + 2]!

[a + b′′ + i + z+ s ′ + 3]!
(2.19)

with ∑
i ′+z′=i+z−v

(η+,j̃
′′,+|ζ i ′+z′)q(ζi ′+z′ |η+,J̃ ′′,+)q = δj̃ ′′,J̃ ′′ . (2.20)

Since the isofactors withi − z = i ′ − z′ + a′′ − v and i + z = i ′ + z′ + v are used, we may
take eitheri ′ − z′ > 0 or i − z 6 a. In both cases, conditionsa + z− i > 0 or i ′ − z′ > 0,
respectively, imply that the non-vanishing isofactors (2.4) or matrix elements† (1.1) and
inverse matrix (2.19) may exist only fora − a′′ + v > 0. The ‘local’ bi-orthogonality
relation (2.20) in general is more convenient than the global bi-orthogonality relation of the
dual isofactors∑
y ′i ′y ′′i ′′

(a′b′y ′i ′a′′b′′y ′′i ′′||+,j̃ ′′,+; abyi)q(a′b′y ′i ′a′′b′′y ′′i ′′||+,J̃ ′′,+; abyi)q = δj̃ ′′,J̃ ′′ (2.21)

which may also be used (especially withy = y0, i = i0, when the first isofactor is
proportional to theq-Racah coefficient) for expansion of arbitrary isofactors in terms of
isofactors with subscript+, J̃ ′′,+.

Note that the bi-orthogonal classical Wilson–Rahman4F3(1) series also appeared in the
inversion problem for overlaps of the dual projected SU(n) ⊃ SO(n) states [40], where the
bi-orthogonality relations[
(b − s + 1)2(b + s + 2)2
(2b − 2j + 1)(2b − 2j + 3)

]1/2∑
k>0

1

1+ δk0

[
(j + k)!(j − k)!

(j ′ + k + 1)!(j ′ − k + 1)!

]1/2

×(j, k; s,−k|b − j, 0)(j ′ + 1, k; s,−k|b − j ′ + 1, 0) = δjj ′ (2.22)∑
j

[
(b − s + 1)2(b + s + 2)2(j + k)!(j − k)!

(2b − 2j + 1)(2b − 2j + 3)(j ′ + k + 1)!(j ′ − k + 1)!

]1/2

×(j, k; s,−k|b − j, 0)(j + 1, k′; s,−k′|b − j + 1, 0) = δkk′(1+ δk0) (2.23)

of special SU(2) Clebsch–Gordan coefficients forb > 3s were also derived using the relation
[41] between special4F3(1) and 3F2(1) series.

† This situation is not observed in [22].
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3. Bi-orthogonal expansion of canonical tensor operators

We will now introduce new expressions for SU(3) and uq(3) canonical isofactors for arbitrary
values of the multiplicity labelt . An expansion for these coupling coefficients in terms of
bi-orthogonal isofactors with superscript−,+, Ĩ is given as (5.18) of [18]

(T̃ k|η−,+,Ĩ )q ≡ U3

 (a′b′)
1

(a′′ − k, b′′ − k) (a b)

k+1
(k k) (a b)−,+,Ĩ (a′′b′′)


q

=
∑
t>k+1

U3

 (a
′b′)

1
(a′′ − k, b′′ − k) (a b)

k+1
(k k) (a b)

t

(a′′b′′)


q

×(a′b′y ′0i ′0; a′′b′′y ′′0i
′′
0||t; abỹĨ )q (3.1a)

= ([a + 1][b + 1][a + b + 2][b′]![ a′ + b′ + 1]!)1/20[abĨ z̃]∇[i
′′
0i
′
0Ĩ ]

([b′′]!)1/2N ( q,k
a′′b′′ )[a

′b′; ab]

×
∑
j,j ′

(−1)(b
′′−a′′−k)/2−Ĩ+j qQ6+j (j+1)−j ′(j ′+1)+3Ĩ (Ĩ+1)/2

∇2[ 1
2(a
′′ − k), 1

2a
′, j ]∇2[ 1

2(a
′ + a′′ − a − k)− v, 1

2a, j ]

× [2j + 1] [2j ′ + 1]

[b − v + 1
2(a
′ + a′′ − k)− j + 1]! [b − v + 1

2(a
′ + a′′ − k)+ j + 2]!

× ∇2[ 1
2(a
′′ + b′′)− k, j ′, j ]

∇2[ 1
2(b
′′ − k), 1

2a
′, j ′]∇2[ 1

2k, j
′, Ĩ ]02[abj ′ z̃− 1

2k]
(3.1b)

with two ‘braided’ sums resembling the very well-poised9φ8 and11φ10 basic hypergeometric
series and the correspondingq-phase

Q6 = (b′ − v + 1)(b′ + b′′ − b + v − k)− 1
8(a
′ + b′′ − k)(a′ + b′′ − k + 2)

− 1
2{(a′′ − k)(a + b′ − a′′ + k + v)− (b′′ − k)(b′′ − b + v − k)}
− 1

4(a + b − b′ − b′′ − v + k)(a + b − b′ − b′′ − v + k + 2)

− 1
8k

2+ 3
4k + 1

2kz̃ (3.2)

(see (5.19) and (5.8) of [18]). Overlaps (3.1c) correspond to the solution of a boundary value
problem which involves a recursive construction (1.3), a recoupling technique analogous
with (2.13) and (5.1) of [26], and expansion coefficients of tensor operatorsT̃

(a′′b′′)t=k+1,q
y ′′i ′′i ′′z

.
Hence they are part of the special recoupling coefficients (3.1a) (with ‘mixed’ multiplicity
labels) and are equivalent to superpositions of ‘seed’ isofactors in (3.1b). Here and in what
follows the renormalization factor

N (q,ka′′b′′)[a′b′; ab] = D(
q,t=1

a′′−k,b′′−k )[a
′b′; a b]D( q,t=k+1

k k
)[a b; a b]

[a′′ − k]![ b′′ − k]!([k]!)1/2
(3.3)

is expressed in terms of the denominator functionsD( q,t
...
)[. . .] [18, 27] of the uq(3) canonical

tensor operators with maximal and minimal null space, respectively. The summation
parametersj andj ′ are restricted as follows:

max( 1
2(a
′ − a′′ + k), a + v − 1

2(a
′ + a′′ − k)) 6 j

6 min( 1
2(a
′ + a′′ − k), 1

2(a
′ + a′′ − k)− v) (3.4a)
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max( 1
2(a
′ − b′′ + k), 1

2(a
′ − b′′ + k)− v, Ĩ − 1

2k) 6 j
′

6 min( 1
2(a
′ + b′′ − k), 1

2(b
′′ − a′ − k)+ a + v, Ĩ + 1

2k). (3.4b)

The summation intervals do not exceed

min(a′′, a′′ − v, a′ + a′′ − a − v, b′ + b′′ − b + v)− k
for j and

min(b′′, b′′ + v, a − a′ + b′′ + v, b − b′ + a′′ − v)− k
for j ′ (cf the elements of array (1.3b) of [27] or (2.8b) of [18] which characterize the
canonical tensor operators—see (1.5b) of [27]).

Since the stretched coupling in this case is trivial, the expansion coefficients of the
twisted tensor operators̃T (a

′′b′′)t=k+1,q
y ′′i ′′i ′′z

in terms of non-orthonormal tensor operators, which
correspond to coupled states|η+,j̃ ′′,+)q , can be expressed as overlaps of elementary reduced
matrix elements

(T̃ k|η+,j̃ ′′,+)q =
∑

i ′+z′=i+z−v
(η+,j̃

′′,+|ζ i ′+z′)q〈aby i ′ + i ′′0 ||T̃ (a
′′b′′)t=k+1,q

y ′′0 i
′′
0

||a′b′y ′i ′〉q (3.5a)

=
∑

i ′+z′=i+z−v
〈aby i ′ + i ′′0 ||T k,k,t=k+1,q

k,k/2 ||ab, y − k, i ′ + i ′′0 − 1
2k〉q

×〈ab, y − k, i ′ + i ′′0 − 1
2k||T a

′′−k,b′′−k,t=1,q
y ′′0−k,i ′′0−k/2 ||a′b′y ′i ′〉q(η+,j̃ ′′,+|ζ i ′+z′)q (3.5b)

with inverse expansion coefficients (2.19). The first reduced matrix element in (3.5b) is
expressed without a sum by means of (4.18) of [18], when the second special (stretched)
reduced matrix element of the maximal null space tensor operator in (3.5b) is obtained as the
next step. Equation (3.1) of [27] (together with (3.5) of [27] and the denominator functions
(3.7) or (3.14) of [27]) for such extremal values of the parameters has fixed summation
parametersm′ = i ′ andj ′ = 1

2(b − b′′ − v − z′ + i ′ + n2) and gives

〈aby i ′ + i ′′0 ||T a
′′b′′t=1,q

y ′′0 i
′′
0

||a′b′y ′i ′〉q = (a′b′y ′i ′; a′′b′′y ′′0 i ′′0 ||t = 1; aby i ′ + i ′′0)q (3.6a)

= ([a + 1][b + 1][a + b + 2][2i ′ + 1]![ i + z]![ i − z]!)1/2
D( q,t=1

a′′b′′ )[a
′b′; a b]([2i ′ + a′′ + 1]![ i ′ + z′]![ i ′ − z′]!)1/2

×
(

[a + z+ i + 1]![b − z+ i + 1]![a′ + z′ − i ′]![ b′ − z′ − i ′]!
[a + z− i]![ b − z− i]![ a′ + z′ + i ′ + 1]![b′ − z′ + i ′ + 1]!

)1/2

×
∑
n1,n2

(−1)n1+n2qQ2+a′′n1[a + b + n1+ n2+ 2]![b − z− i + n2]!

[n1]![ n2]![ a + n1+ 1]![b + n2+ 1]![a + b + n1+ 2]!

× [a − a′′ + v + n1]![ b′ − a′′ + a + v + n1+ 1]!

[a + b + n2+ 2]![a′ + a′′ − a − v − n1]![ b′ + b′′ − b + v − n2]!

× [b − b′′ − v + n2]![ a′ − b′′ + b − v + n2+ 1]!

[b − b′′ − v − z′ − i ′ + n2]![ a + b − a′′ − b′′ + n1+ n2+ 1]!
(3.6b)

with i = i ′ + i ′′0, i + z = i ′ + z′ + v and

Q2 = 1
2a
′′(a − a′′ + v + z′ − i ′)+ 1

2b
′′(b − b′ − b′′ − v + a′ + 2z′).

Expression (3.6b) resembles (3.7b) of [27] for the denominator function, but the second
sum (overn2) is of balanced5φ4 type, instead of the unbalanced4φ3. The sum overn1 is
indefinite fora − a′′ + v < 0 when non-vanishing values of (3.6b) are impossible.
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After inserting (3.6b) into (3.5b), the summation interval overi ′ + z′ = i + z − v
is indefinite (the restrictingq-factorials of the4φ3 series cancel in the numerator and
denominator). Therefore, it is reasonable to use the hook permutation symmetry [42] of the
matrix elements under the substitution

(a, b)→ (−a − b − 3, a) (a′, b′)→ (−a′ − b′ − 3, a′)

v→ a − a′ + v z→ a + z+ 1. (3.7)

Because of non-invariance under (3.7) for the initial definition of the denominator functions
[27], the q-phaseqQ2 needs to be amended byq−a

′′(a+b+2). After inserting the last factor
of (3.5b) in the new version, we find the following expression for the matrix element:

〈aby i ′ + i ′′0 ||T̃ (a
′′b′′)t=k+1,q

y ′′0 i
′′
0

||a′b′y ′i ′〉q
= (a′b′y ′i ′; a′′ − k, b′′ − k, y ′′0 − k, i ′′0 − 1

2k||t = 1; a, b, y − k, i ′ + i ′′0 − 1
2k)q

×(a, b, y − k, i ′ + i ′′0 − 1
2k; k k k 1

2k||t = k + 1; aby i ′ + i ′′0)q (3.8a)

= (−1)a−a
′

D( q,t=1
a′′−k,b′′−k )[a

′b′; ab]D( q,t=k+1
k k

)[ab; ab]

×
(

[a + 1][b + 1][a + b + 2][2i ′ + 1]![ i + z]![ i − z]!
[2i ′ + a′′ + 1]![k]![ i ′ + z′]![ i ′ − z′]!

× [a + z+ i + 1]![b − z+ i + 1]![a′ + z′ − i ′]![ b′ − z′ − i ′]!
[a + z− i]![ b − z− i]![ a′ + z′ + i ′ + 1]![b′ − z′ + i ′ + 1]!

)1/2

×
∑
n1,n2

(−1)n1+n2qQ3[b − n1]![ a + b − n1+ 1]![b − n2]!

[n1]![ n2]![ a′′ − b′ + b − v − k − n1]![ b′′ + v − k − n2]!

× [b + a′′ + b′′ − 2k − n1− n2+ 1]![a′ − b′′ − v + k + n2]!

[b− n1− n2]![ a′ + a′′ + b − v − k − n1+ 2]![b′ + b′′ − k + v − n2+ 1]!

× [b′′ − k + i + z− n2]!

[a′′ + b − v − k − n1+ 1]![ i + z− n2]![ a + n2+ 1]!
(3.8b)

where

Q3 = (a′′ − k)n1+ 1
2(a
′′ − k)(−a − 2b − 4− a′′ + v + k + z′ − i ′)

+ 1
2(b
′′ − k)(b − b′ − b′′ − v + a′ + k + 2z′)+ 1

2k(k − 3i + z− 3). (3.9)

The sum overn2 in (3.8b) corresponds to the balanced5φ4(q) basic hypergeometric series
and forms theq-polynomial structure resembling (2.4), as well as the corresponding sum
in (3.6b).

Now we return to the composition (3.5b) of (2.19) and (3.8b) for which the3φ2 type
sum overi ′ + z′ (balanced fork = 0) may be rearranged in accordance with the symmetries
and different versions of expressions for the Clebsch–Gordan coefficients of uq(2) [43–45]
or uq(1, 1), as follows,∑
x

q−k(x−v)[b′′ − k − n2+ x]![ a + x + 1]![b′ + v − x]!

[b′ + v − s ′ − x]![ x − n2]![ a + b′′ + s ′ + x + 3]!
= [k]![ b′′ − k]![ a + b′ + v + 2]!

[b′ + b′′ + a + v + 3]!

×
∑
s

[a + n2+ 1]![b′ + b′′ − k + v − n2+ 1]!qs(b
′+b′′+a+v+3)−k(b′−s ′)

[s]![ b′ + v − n2− s ′ − s]![ k − s]![ a + n2+ s ′ + s + 2]!

× [s ′ + s]!
[b′′ − k + s ′ + s + 1]!

(3.10)
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in a such way that the new interval of summation is additionally restricted byk (hence it
is finite for a tensor operator of fixed rank) and the sums overn1 andn2 turn into 4φ3 type
sums, one of which is balanced. (However, its expression in terms ofq-6j coefficients is
probably not helpful for further simplification.)

After replacings by s ′′ − s ′, in analogy with (3.17) of [26] (in contrast with a failure
to rearrange the denominator functions (3.7b) of [27] in the uq(3) case) we may use the
standard2φ1 summation formulae [36, 39] and rearrange this double sum in the composition
(3.5b) of (2.19), (3.8b) and (3.10) as follows:∑
n1,n2

(−1)n1+n2q(a
′′−k)n1[b − n1]![ a + b − n1+ 1]![b − n2]!

[n1]![ n2]![ b − n1− n2]![ a′′ − b′ + b − v − k − n1]![ b′′ + v − k − n2]!

× [b + a′′ + b′′ − 2k − n1− n2+ 1]!

[a′ + a′′ + b − v − k − n1+ 2]![b′ + v − n2− s ′′]!
× [a′ − b′′ − v + k + n2]!

[a′′ + b − v − k − n1+ 1]![a + n2+ s ′′ + 2]!
(3.11a)

=
∑

n1,n2,s1,s2

(−1)n1+n2+s1qn1n2+s1(b−n1−n2+1)[b − s1]!

[s1]![ n1− s1]![ n2− s1]![ b′ + v − n2− s ′′]!

×q
(a′′−k)n1[a + b − n1+ 1]!(−1)b

′′+v−k−n2−s2[a′ − s2]!

[a′′ − b′ + b − v − k − n1]![ a + n2+ s ′′ + 2]!

× q−s2(2k−a
′′−b′′−b+n1+n2−1)−(b′′+v−k−n2)(a

′+a′′+b−v−k−n1+2)

[s2]![ a′ + a′′ + b − v − k − n1− s2+ 2]![b′′ + v − k − n2− s2]!
(3.11b)

= [a + b′ − a′′ + v + k + 1]!

[a + b′ + v + 2]!

∑
s1,s2

qs1(s
′′+1)+s2(b′′−k+s ′′+1)

[s1]![ s2]![ b′′ + v − k − s1− s2]!

×q
(b′′+v−k)(b′+v−s ′′)−(a′−a−v)(a′+a′′+b−v−k+2)(−1)a

′′+b′′−b′+b+s1+s2

[b′ + v − s1− s ′′]![ a′′ − b′ + b − v − k − s1]!

× [b − s1]![ a′ − s2]![ a′′ + b′′ − 2k + v − s1− s2]!

[a′ + a′′ − a − v − k − s2]![ a + b′′ + v − k − s2+ s ′′ + 2]!
(3.11c)

= (−1)a
′′+b′′−b′+bq(a−a

′+v)(a+b′+v+2)+a′′(b′′+v−k)[a + b′ − a′′ + v + k + 1]!

[a + b′ + v + 2]![b′ + v − s ′′]![ a + b′′ + v − k + s ′′ + 2]!

× [b − b′ − v + s ′′]![ a′′ − k]!

[a − a′ + b′′ + v − k + s ′′ + 1]!

∑
n

(−1)nqn(a+b
′−a′′+v+k+2)

[n]![ a′ + a′′ − a − v − k − n]!

× [a′ − n]![ b − b′′ − v + k + n]![ a − a′ + b′′ + v − k + s ′′ + n+ 1]!

[b′′ + v − k − n]![ a − a′ + v + n]![ a − a′ − a′′ + v + k + s ′′ + n]!
.

(3.11d)

After we replace someq-factorials in (3.11c) as follows,

[a′′ + b′′ − 2k + v − s1− s2]!

[a′′ − b′ + b − v − k − s1]![ a′ + a′′ − a − v − k − s2]![ b′′ + v − k − s1− s2]!

=
∑
n

{[a′′ − k]!q(a
′+a′′−a−v−k−s2)(b′′+v−k−s1−s2)−(n−s2)(a′′+b′′−2k+v−s1−s2)}

×{[n− s2]![ a′ + a′′ − a − v − k − n]!

×[b′′ + v − k − s1− n]![ a − a′ + v + n]!}−1
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the summation overs1 and s2 is possible. The double sum in (3.11c) corresponds to a
q-version of a special Kampe de Feriet series rearranged (up to an additionalq-phase
factor) in analogy with the relation∑
r ′,s

(−1)r
′+sqr

′(a+z−i+1)−s(i+z+1)[2i ′ − s]![ i − i ′ + i ′′ + s]![ a′′ − v + r ′]![ a′ − r ′]!
[s]![ i ′ + i ′′ − i − s]![ r ′]![ v − r ′]![ i ′ − z′ − s − r ′]![ i − i ′ + i ′′ − v + s + r ′]!

= [a′′ − v]![ a + v + 1]![ i ′ − i ′′ + i]!
[i ′ + i ′′ − i]![ i − z]!

×
∑
n

(−1)nqn(a
′′−2i ′′)[i ′ + z′ + n]![ a′ − n]![ i − z+ v − n]!

[n]![ v − n]![ i ′ − z′ − n]![ i + z− v + n]![ a + v − n+ 1]!
(3.12)

(cf [46]) which follows from the expressions for the stretchedq-9j coefficients (cf the
q = 1 case of [38]) or (4.5) and (3.16) of [19] for the multiplicity-free isofactors
(a′b′y ′i ′; a′′0y ′′i ′′||abyi)q of uq(3) with b′′ = 0, a + 2b = a′ + 2b′ + a′′.

Finally, the expansion coefficients (3.5a) may be expressed as follows:

(T̃ k|η+,j̃ ′′,+)q ≡ U3

 (a′b′)
1

(a′′ − k, b′′ − k) (a b)

k+1
(k k) (a b)+,j̃

′′,+ (a′′b′′)


q

(3.13a)

= (−1)j̃
′′−z̃′′ [a + b′ − a′′ + v + k + 1]!

N ( q,k
a′′b′′ )[a

′b′; ab]∇[ 1
2b
′, 1

2b, j̃
′′]([j̃ ′′ + z̃′′]!)1/2

× H [a′′b′′j̃ ′′z̃′′]([2j̃ ′′ + 1][j̃ ′′ − z̃′′]!)1/2
([a + 1]![a + b + 2]![a′]![ a′ + b′ + 1]![a′′]![ b′′]![ a′′ + b′′ + 1]!)1/2

×
∑
n,s ′,s ′′

(−1)n+s
′
qR+(s

′′−s ′)(b′+b′′+a+v+3)+k(s ′−b′)+n(a+b′−a′′+v+k+2)

[n]![ b′′ + v − k − n]![ a′ + a′′ − a − v − k − n]![ a − a′ + v + n]!

× [a′ − n]![ b − b′′ − v + k + n]![ j̃ ′′ + z̃′′ + s ′]![ s ′′]![ b − b′ − v + s ′′]!
[s ′]![ j̃ ′′ − z̃′′ − s ′]![ b − b′ − v + s ′]![ s ′′ − s ′]![ k + s ′ − s ′′]!

× [a − a′ + b′′ + v − k + s ′′ + n+ 1]![a + b′′ + v + s ′ + 2]!

[a − a′ + b′′ + v − k + s ′′ + 1]![b′ + v − s ′′]![ b′′ − k + s ′′ + 1]!

× [b′ + v − s ′]!
[a − a′ − a′′ + v + k + s ′′ + n]![ a + b′′ + v − k + s ′′ + 2]!

(3.13b)

with the same renormalization factor (3.3) and theq-phase

R = −Q̃+ a′′(b′′ + v − k)+ 1
2(b
′′ − k)(a′ − b′ − b′′ + b − v + k)+ 1

2(a
′′ − k)

×(−a − 2b − a′′ + v + k − 4)+ (a − a′ + v)(a + b′ + v + 2)

+ 1
2k(k − 2a′′ + v − 3)− 1

4(a − a′′ + 2v)(a′′ + 2b′′)

with Q̃ as defined in (2.8). We see that expression (3.13b) is more symmetric than the
expressions for the denominator functions [18, 27]: it is invariant under permutations of
parameters of subarray (1.5b) of [27] which restrict the number of independent tensor
operators and the summation interval forn. However, it is more convenient forv 6 0,
when this interval forn coincides withM − k − 1. Specifically, for the canonical tensor
operator with the minimal null space (which, in general, is not self-adjoint) andv 6 0, n is
fixed. The summation interval fors ′ is restricted by min[̃j ′′ − z̃′′, j̃ ′′ − 1

2(b − b′)] and the
differences ′′ − s ′ > 0 is restricted byk. Hence, they both do not exceeda′′. Although the
sum overs ′′ for M − k = 1 andv > 0 resembles the Minton formula [36], they are not
equivalent.
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The conditiona − a′′ + v + k > 0 for the non-vanishing of special isofactors (2.4) or
matrix elements (1.1) in (3.13b) is not necessary (contrary to the case of the denominator
function (3.7b) of [27])—expression (3.13b) is indefinite (with possible negativeq-factorials
in the numerator) only for botha−a′′+v+k < 0 anda′−b′′−v+k < 0, conditions implied
by the null space of the operatorT̃ (a

′′b′′)t=k+1,q
y ′′0 i
′′
0 i
′′
z

(cf array (1.3b) and subarray (1.5b) of [27]).

For v > 0 anda− a′′ + v+ k < 0 or a′ − b′′ − v+ k < 0 the use of the isofactor symmetry
relations (4.2a) and (4.2b) of [27] (possibly with transition to the overlaps (T̃ k|η−,J̃ ′′,−)q)
may be required.

The separate series of4φ3 and 5φ4 type in (3.13b) are rather remote from balanced
ones, but a considerable number (ten) of the triadic correlations between their parameters
appear (resembling those which were used to rearrange (3.11a) into (3.11c)). Although for
k = 0 the sum overs ′′ = s ′ can be accomplished in terms of a balanced3φ2 series, attempts
to rearrange thek > 1 case was unsuccessful. Note that the overlap(T̃ 0|η+,j̃ ′′,+)q may
also be derived as a single sum (in terms of very well-poised series) as a composition of
the overlaps(ηĴ ′,↑,↑|ηĨ

′,−,−)q (with Ĵ ′ = im − i ′′m, see (4.4) of [18] and (3.8) of [27] for

renormalization) and(ηĨ ′,−,−|η+,j̃
′′,+)q (written after applying the symmetry properties to

(3.1b) of [18]).
Using our overlaps (3.13b) and (3.1c) or (5.18) of [18], the general reduced matrix

elements of operator (1.3) can be expanded in terms of the general bi-orthogonal isofactors
as follows:

〈abyi||T̃ (a′′b′′)t=k+1,q
y ′′i ′′ ||a′b′y ′i ′〉q
=
∑
j̃ ′′
(T̃ k|η+,j̃ ′′,+)q(a′b′y ′i ′; a′′b′′y ′′i ′′||+,j̃ ′′,+; abyi)q (3.14a)

=
∑
Ĩ

(T̃ k|η−,+,Ĩ )q(a′b′y ′i ′; a′′b′′y ′′i ′′||−,+,Ĩ ; abyi)q . (3.14b)

The general overlap of the coupled tensor operators (1.3) may be expressed in terms of the
auxillary overlaps as follows:

(T̃ k|T̃ k′)q =
∑
y ′i ′y ′′i ′′

〈abyi||T̃ (a′′b′′)t=k+1,q
y ′′i ′′ ||a′b′y ′i ′〉q〈abyi||T̃ (a

′′b′′)t ′=k′+1,q
y ′′i ′′ ||a′b′y ′i ′〉q (3.15a)

=
∑

i ′,i,y−y ′=y ′′

q−3y ′d3[a′′b′′][2i + 1]

d3[ab][2i ′′ + 1]
〈abyi||T̃ (a′′b′′)t=k+1,q

y ′′i ′′ ||a′b′y ′i ′〉q

×〈abyi||T̃ (a′′b′′)t ′=k′+1,q
y ′′i ′′ ||a′b′y ′i ′〉q (3.15b)

=
∑
j̃ ′′,J̃ ′′

(T̃ k|η+,j̃ ′′,+)q(η+,j̃ ′′,+|η+,J̃ ′′,+)q(η+,J̃
′′,+|T̃ k′)q (3.15c)

where the auxiliary triangular overlap matrix(η+,j̃ ′′,+|η+,J̃ ′′,+)q may be expressed by means
of (3.7) of [18] using the symmetry properties [27] of the boundary isofactors. (Recall
that (3.15a) may be used for numerical orthonormalization and (3.15b) was only used
effectively for overlaps of self-adjoined canonical tensor operators—see (4.14)—(4.15) of
[18].) Nevertheless, the bilinear combination of uq(3) canonical recoupling coefficients and
overlaps of the coupled tensor operators may be expressed more simply in terms of the
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following overlaps:

∑
t>max(k,k′)

U3


(a′b′)

1
(a′′ − k, b′′ − k) (a b)

k+1
(k k) (a b)

t

(a′′b′′)


q

×U3


(a′b′)

1
(a′′ − k′, b′′ − k′) (a b)

k′+1
(k′k′) (a b)

t

(a′′b′′)


q

(3.16a)

= (T̃ k|T̃ k′)q =
∑
j̃ ′′,Ĩ

(T̃ k|η+,j̃ ′′,+)q(η+,j̃ ′′,+|η−,+,Ĩ )q(η−,+,Ĩ |T̃ k
′
)q (3.16b)

with the auxiliary overlap matrix

(η+,j̃ ′′,+|η−,+,Ĩ )q = qQ1(baa
′b′b′′a′′;j̃ ′′,−z̃′′)−Q1(b

′′a′′b′a′ba;Ĩ ,−z̃)−b′/2−a′

×(−1)b
′−b+(b′′−a′)/2+Ĩ ∇[ 1

2b
′, 1

2b, j̃
′′]H [a′′b′′j̃ ′′z̃′′]

∇[ 1
2a
′, 1

2b
′′, Ĩ ]H [abĨ z̃]

×
(

[a]![ a + b + 1]![a′]![ j̃ ′′ − z̃′′]![ Ĩ + z̃]![2 j̃ ′′ + 1]

[a′′]![ a′′ + b′′ + 1]![b′]![ j̃ ′′ + z̃′′]![ Ĩ − z̃]![ b + 1]

)1/2

× [2Ĩ + 1][Ĩ + j̃ ′′ + 1
2(a − a′′ + v)]!(a − a′′ + v|q)Ĩ−j̃ ′′+(a′′−a−v)/2

[Ĩ − j̃ ′′ + 1
2(a
′′ − a − v)]![ Ĩ + j̃ ′′ + 1

2(a
′′ − a − v)+ 1]!

(3.17)

expressed by means of (3.1b) of [18] using the symmetry properties and(η−,+,Ĩ |T̃ k
′
)q

presented as (3.1c). The sum overj̃ ′′ in (3.16b) is equivalent to the very well-poised8φ7

series which may be transformed into a balanced4φ3 series (cf (2.5.1) of [36], or (6.10) of
[47]) but is not equivalent to aq-6j coefficient. Note that the overlap

(T̃ 0|T̃ k′)q = δk′,0 (3.18)

is trivial, sinceT̃ (a
′′b′′)t=1,q

y ′′i ′′i ′′z
coincides with the unit canonical operatorT (a

′′b′′)t=1,q
y ′′i ′′i ′′z

which is

orthogonal to each̃T (a
′′b′′)t>1,q

y ′′i ′′i ′′z
.

Finally, a solution of the system of equations (3.16a) and (3.16b), beginning from
k = M − 1, allows us to orthonormalize the operatorsT̃ (a

′′b′′)t=k+1,q
y ′′i ′′i ′′z

and to expand their
reduced matrix elements (using Gram determinants, cf [22]) either in terms of the bi-
orthogonal isofactors with subscript+, j̃ ′′,+ or in terms of the isofactors with superscript
−,+, Ĩ , as well as in terms of the isofactors with superscript+, j̃ ′′,+, which corresponds
to the solution of the seed problem in [24].

4. The ‘seed’ isofactors of the minimal null space case

Let us consider separately the overlap matrices and ‘seed’ isofactors for the canonical tensor
operators with the minimal null space, i.e. fork =M − 1. The expression of expansion
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coefficients (3.13b) with k =M−1 may be simplified considerably forv 6 0. Particularly,
for k = b′′ + v we obtained

(T̃ b
′′+v|η+,j̃ ′′,+)q =

(−1)b
′′−z̃′′−j̃ ′′qR H [a′′b′′j̃ ′′z̃′′] ∇[ 1

2b
′, 1

2b, j̃
′′]

N ( q,b′′+v
a′′b′′ )[a

′b′; ab]

× [b]![ a′ + b − v + 1]!

[−v]![ a − a′ + v]![ b′ − b + v]![ b′ + 1]![a + b′ + v + 2]!

×
(

[a′]![2 j̃ ′′ + 1][j̃ ′′ − z̃′′]!
[a + 1]![a + b + 2]![a′ + b′ + 1]![a′′]![ b′′]![ a′′ + b′′ + 1]![ j̃ ′′ + z̃′′]!

)1/2

×
∑
x

(−1)xq(b
′′+v)(a+v+2)−x(a+2)[b′′ − x]![ a + b′ + v + x + 2]!

[x]![ b′′ − z̃′′ − j̃ ′′ − x]![ b′′ − z̃′′ + j̃ ′′ − x + 1]![b − b′′ − v + x]!
.

(4.1)

For this purpose, in analogy with the transformations of (3.11a)–(3.11c) (cf also [39]), we
rearranged the sum overn, s ′, s ′′ of (3.13b) as follows:

[a′]![ b]!

[a − a′ + v]![ b′ − b + v]!

∑
s ′,s ′′1 ,s

′′
2 ,s
′′
0

(−1)s
′
q(s

′′
1−s ′)(b′+b′′+a+v+3)+(b′′+v)(s ′−b′)

[s ′]![ j̃ ′′ − z̃′′ − s ′]![ b − b′ − v + s ′]![ s ′′2 − s ′]!

× [j̃ ′′ + z̃′′ + s ′]![ b′ + v − s ′]![ a + b′′ + v + s ′ + 2]![s ′′2]!

[b′′ + v + s ′ − s ′′1]![ b′ + v − s ′′1]![ a + s ′′1 + 2]![−v + s ′′2 + 1]!

× (−1)s
′′
0−s ′′2q(v+s

′)(s ′′1−s ′′2 )−s ′′0 (s ′′1−s ′′2−1)−s ′′1

[s ′′1 − s ′′0]![ s ′′0 − s ′′2]!
. (4.2)

Summation overs ′′0 givesδs ′′1 ,s ′′2 and leads to a partial case of (3.13b). Otherwise, the double
sum appears after summation overs ′′1, s

′′
2. After the substitution ofs ′′0 by b′′ +v+ s ′ −x, the

sum overs ′ turns into a balanced one and, finally, we obtain (4.1). Similarly, the sum over
n, s ′, s ′′ in (3.13b) may be rearranged fork = a′′ −b′ +b−v, or for k = a′ +a′′ −a−v, or
for k = a′′, respectively. It can also be derived (with the exception of a fixedn dependent
factor (−1)nqn(a+b

′−a′′+v+k+2)) after the Regge-type substitutions

a′ ↔ a + v b′ ↔ b′ a′′ ↔ a′ + a′′ − a − v
b′′ ↔ a − a′ + b′′ + v a ↔ a′ − v b↔ b (4.3a)

or

a′ ↔ a′ b′ ↔ b − v a′′ ↔ a′′ − b′ + b − v
b′′ ↔ b′ + b′′ − b + v a ↔ a b↔ b′ + v (4.3b)

or

a′ ↔ a + v b′ ↔ b − v a′′ ↔ b′′ + v
b′′ ↔ a′′ − v a ↔ a′ − v b↔ b′ + v (4.3c)

of

([a + 1]![a + b + 2]![a′]![ a′ + b′ + 1]![a′′]![ b′′]![ a′′ + b′′ + 1]!)1/2

×q−RN (q,kmax
a′′b′′ )[a

′b′; ab](T̃ kmax|η+,j̃ ′′,+)q
respectively, which correspond to the transpositions of the array (1.3b) of [27] or (2.8b) of
[18].

Now let us consider the overlap matrices and ‘seed’ isofactors (3.1c) for the canonical
tensor operators with the minimal null space. Whenb−b′ −v 6 0 in this extremal case the
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summation parameterj ′ in (3.1c) is fixed and the ‘braided’ sum (4.11) of [18] (depending
on three parameters) may be used for summation overj . Particularly, fork = b′′ + v the
asymmetric ‘seed’ isofactors (3.1c) may be expressed as follows:

(T̃ b
′′+v|η−,+,Ĩ )q = qQ6−(a′−v)(a′−v+2)/4+(a+b−b′)(a+b−b′+2)/4+(b′+1)(b′−b+v)+3Ĩ (Ĩ+1)/2

× (−1)a−a
′′+Ĩ−z̃([a + 1][b + 1][a + b + 2][b′]![ a′ + b′ + 1]!)1/2

N ( q,b′′+v
a′′b′′ )[a

′b′; ab]∇[ 1
2a
′, 1

2b
′′, Ĩ ]([b′′]!)1/2[Ĩ + z̃]![−v]!

× 0[abĨ z̃] [ Ĩ − z̃]! [ a′]![ b]![ a′ + b − v + 1]!

[a − a′ + v]![ b′ − b + v]![ a + 1]![b′ + 1]![a + b′ + v + 2]!
. (4.4)

Combining (4.4) and (3.17), together with the ‘braided’ sum of the type (5.5) of [18] with

p1 = 1
2(a
′ − b′′)− 1 p2 = 1

2(a
′′ − a − v)− j̃ ′′ − 1

p3 = 1
2(a
′′ − a − v)+ j̃ ′′ p4 = 1

2(a
′ + b′′) p5 = b − z̃

gives the overlaps correlated with the symmetric ‘seed’ isofactors and expressed in terms
of the 3φ2 type basic hypergeometric series as follows:

(T̃ b
′′+v|η+,j̃ ′′,+)q =

∑
Ĩ

(T̃ b
′′+v|η−,+,Ĩ )q(η+,j̃ ′′,+|η−,+,Ĩ )q (4.5a)

= qQ6−(a′−v)(a′−v+2)/4+(a+b−b′)(a+b−b′+2)/4+(b′+1)(b′−b+v)

× q(a
′−b′′)(a′−b′′−2)/4+a′b′′−b′/2−Q1(a

′b′a′′b′′ab;0z̃)

[−v]![ a − a′ + v]![ b′ − b + v]![ a + 1]![b′ + 1]!

× ∇[ 1
2b
′, 1

2b, j̃
′′]H [a′′b′′j̃ ′′z̃′′][a′]![ b]!

[a + b′ + v + 2]!N ( q,b′′+v
a′′b′′ )[a

′b′; ab]

×
(

[a + 1]![a + b + 2]![a′]![ a′ + b′ + 1]![2j̃ ′′ + 1] [j̃ ′′ + z̃′′]!
[a′′]![ b′′]![ a′′ + b′′ + 1]![ j̃ ′′ − z̃′′]!

)1/2

×
∑
u

×{qQ1(b
′a′aba′′b′′;j̃ ′′ z̃′′)−u(a′+b−v+1)[a′ + a′′ − a − v − u]!}

×{[u]![ a′ − u]![ b′′ − z̃′′ − j̃ ′′ − u]![ b − b′′ − v + u]!

×[b′′ − z̃′′ + j̃ ′′ − u+ 1]!}.−1 (4.5b)

Now extremal canonical seed isofactors fortmax= b′′ + v may be written as follows:

(a′b′y ′0i
′
0a
′′b′′y ′′0i

′′
0||tmax; abỹĨ )q

= (T̃ tmax|η−,+,Ĩ )q
(∑

j̃ ′′
(T̃ tmax|η+,j̃ ′′,+)q(T̃ tmax|η+,j̃ ′′,+)q

)−1/2

(4.6)

(a′b′y ′0i
′
0a
′′b′′ỹ ′′j̃ ′′||tmax; aby0i0)q

= (T̃ tmax|η+,j̃ ′′,+)q
(∑

j̃ ′′
(T̃ tmax|η+,j̃ ′′,+)q(T̃ tmax|η+,j̃ ′′,+)q

)−1/2

. (4.7)
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In both equations (4.6) and (4.7), the renormalization factorsN ( q,t

a′′ b′′ )[a
′b′; ab] cancel, as

well as some other elementary factors. The sum overj̃ ′′ in the new denominator function
of (4.6) and (4.7) may be rearranged as follows:

D2(
q,t=b′′+v+1
a′′b′′ )[a′b′; ab] = [a + 1]!

[a′ + b − v + 1]!

∑
j̃ ′′,x,u

(−1)b
′′−z̃′′−j̃ ′′−xq−x(a+2)

[x]![u]![ b′′ − z̃′′ − j̃ ′′ − x]!

× [b′′ − x]![ a + b′ + v + x + 2]![2j̃ ′′ + 1]∇2[ 1
2b
′, 1

2b, j̃
′′]

[b′′ − z̃′′ + j̃ ′′ − x + 1]![b − b′′ − v + x]![ a′ − u]!

× H 2[a′′b′′j̃ ′′z̃′′]q−u(a
′+b−v+1)[a′ + a′′ − a − v − u]!

[b′′ − z̃′′ − j̃ ′′ − u]![ b − b′′ − v + u]![ b′′ − z̃′′ + j̃ ′′ − u+ 1]!
(4.8a)

= [a′′ − v + 1]![a + 1]![b′ + 1]![a′′ + b − v + 2]!

[a′ + b − v + 1]!

×
∑
s,x.u

[b − b′ + a′′ − v − s]!
[s]![ a′′ + b − v + 2− s]!

× (−1)b
′′+v−s−x [b − s]![ b′ + b′′ − b + v + s + 1]!q−x(a+2)−u(a′+b−v+1)

[x + u+ s−b′′−v]![ b′′ + v − x − s]![ b − b′′ − v + x]![ b′′ + v − u− s]!
× [b′′ − x]![ a + b′ + v + x + 2]![a′ + a′′ − a − v − u]!

[b − b′′ − v + u]![ a′ − u]![ a′ + a′′ + b′′ − a − v − x − u+ 1]!
(4.8b)

= [a′′ − v + 1]![a + 1]![b′ + 1]![a′′ + b − v + 2]![a′ + a′′ − v + 2]!

[a′ − b′′ + b − v]![ a′ + b − v + 1]!

×
∑
s,n

qn(b+b
′+2)−(b′′+v−s)(a′+b′+a+b+4)[b − b′ + a′′ − v − s]![ b′′ − n]!

[s]![ b − s]![ a′′ + b − v + 2− s]![ n]![ b′′ + v − s − n]!

× [a′ − b′′ + b − v + n]![ b′ − b + v + s + n]![ a + b′ + v + n+ 2]!

[a′ − b′′ − v + s + n]![ a − b + b′ + v + s + n+ 2]!
. (4.8c)

We rearranged the very well-poised8φ7 series of (4.8a) into the balanced4φ3 series in
(4.8b) (related to aq-6j coefficient) using Watson’s formula (2.5.1) of [36] as presented by
(6.10) of [47] with parameters

a→ b′ − b + 1 b→ a′′ − v + 2 c→ b′ + b′′ − b + v + 2

d → b′ + 2 e→ u− b′′ − v N → b′′ + v − x s → 1
2(b − b′)+ j̃ ′′.

Further we replace some factors in (4.8b) as follows,

[b′′ − x]![ a′ + a′′ − a − v − u]![ b′ + b′′ − b + v + s + 1]!

[x + u+ s − b′′ − v]![ a′ + a′′ + b′′ − a − v − x − u+ 1]!

=
∑
n

q(b
′′−x+1)(n+u+s−b′′−v)−(x−n)(a′+a′′−a−v−u+1)

× [b′′ − n]![ b′ − b + v + s + n]!

[x − n]![ n+ u+ s − b′′ − v]!
(4.9)

and after summation overx andu obtain (4.8c), again rearranging aq-version of a special
Kampe de Feriet series. An additional factor

[a + 1]!

[a′ + b − v + 1]!

which is included in definition of (4.8a) is correlated with the Regge-type symmetry of
seed isofactors and ensures a polynomial structure of the new denominator function (4.8c)
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for q = 1, in a definite analogy with the denominator polynomial as presented by (5.6) of
[23]. Since both summation parameters are restricted by the same multiplicity parameter
(contrary to the denominator function of the maximal null space caseD( q,t=1

a′′b′′ )[a
′b′; ab]

[18, 27]), and all the separate terms are positive, our result may be useful for an extension
of the generic SU(3) denominator function [23] to the uq(3) canonical tensor operator case.
Note that the definition ofD( q,t=b

′′+v+1
a′′b′′ )[a′b′; ab] by (4.8c) in the self-adjoint case is not

strictly correlated with (4.15b) of [18].
In a manner similar to (4.4) and (4.5b), we may derive the overlaps(T̃ a

′′−b′+b−v|η−,+,Ĩ )q
and

(T̃ a
′′−b′+b−v|η+,j̃ ′′,+)q = qQ6+(b′−b−a′+v)(b′−b−a′+v−2)/4+(a+v)(a−a′+b′′+v+1)

×q
(b′+1)(b′−b+v)+(a′−b′′)(a′−b′′−2)/4−a(a+2)/4−a′−b′/2−Q1(a

′b′a′′b′′ab;0z̃)

[−v]![ a′ − a − v]![ b′ − b + v]![ a′ − v + 1]![b′ + 1]!

×qQ1(b
′a′aba′′b′′;j̃ ′′ z̃′′)∇[ 1

2b
′, 1

2b, j̃
′′]H [a′′b′′j̃ ′′z̃′′][a + v]![ b]!

[a′ + b′ + 2]!N ( q,a′′−b′+b−v
a′′b′′ )[a′b′; ab]

×
(

[a + 1]![a + b + 2]![a′]![ a′ + b′ + 1]![2j̃ ′′ + 1][j̃ ′′ + z̃′′]!
[a′′]![ b′′]![ a′′ + b′′ + 1]![ j̃ ′′ − z̃′′]!

)1/2

×
∑
u

q−u(a+b+1)[a′′ − u]!([a′′ + z̃′′ + j̃ ′′ − u+ 1]!)−1

[u]![ a + v − u]![ a′′ + z̃′′ − j̃ ′′ − u]![ b′ − a′′ + v + u]!
(4.10)

for v 6 0, k = a′′ − b′ + b − v (which up to a definite extension are related to (4.4) and
(4.5b) by the Regge-type substitution (4.3a)), as well as(T̃ b

′′ |η−,+,Ĩ )q and (T̃ b
′′ |η+,j̃ ′′,+)q

or (T̃ a−a
′+b′′+v|η−,+,Ĩ )q and (T̃ a−a

′+b′′+v|η+,j̃ ′′,+)q for v > 0. In this and the previous case
all states|η−,+,Ĩ )q are linearly independent.

Otherwise, forb′ −b+v < 0 the states|η−,+,Ĩ )q include some superfluous states. Then
for the maximal values ofk the summation parameterj in (3.1c) is fixed and the ‘braided’
sum (5.5) of [18] (depending on five parameters) may be used for rearrangement of the sum
over j ′. Particularly, fork = a′′ we take (5.5) of [18] with

p1 = 1
2(b − a − b′ − v)− 1 p2 = − 1

2(a + b + b′ + v)− 2

p3 = 1
2(b + a − b′ − v) p4 = 1

2a
′′ + Ĩ p5 = 1

2a
′′ − Ĩ − 1

and obtain

(T̃ a
′′ |η−,+,Ĩ )q = (−1)a

′′+(a′+b′′)/2−Ĩ qQ6+a′(a′+2)/4+a′′(z̃−a′′/4−1/2)+Ĩ (Ĩ+1)/2

×0[abĨ z̃]([a + 1][b + 1][a + b + 2][b′]![ a′ + b′ + 1]!)1/2

N ( q,a′′
a′′b′′ )[a

′b′; ab][a′′]!([b′′]!)1/2[−v]![ a′ − a − v]!

× ∇[ 1
2b
′′, 1

2a
′, Ĩ ][a + v]![ b′ + v]![ a + b′ + v + 1]!

[b − b′ − v]![ a′ − v + 1]![b − v + 1]![a′ + b + v + 2]!

×
∑
u

(−1)uq−ua
′′
[Ĩ − z̃+ u]![ b − u]!

[u]![ Ĩ + z̃− u]![ b′ + v − u]![ a + u+ 1]!
. (4.11)
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Since its direct expansion in terms of(η+,j̃ ′′,+|η−,+,Ĩ )q does not simplify matters, we first
derive

(T̃ a
′′ |ηĨ ′,−,−)q =

∑
Ĩ

(T̃ a
′′ |η−,+,Ĩ )q(η−,+,Ĩ |ηĨ ′,−,−)q

= qQ6+a′(a′+2)/4+a′′(z̃−a′′/4−1)−(a−a′′)(a−a′′+2)/4−b′′−Q1(a
′b′a′′b′′ab;0z̃)

× (−1)a−a
′
0[a′b′Ĩ ′z̃′]([b + 1]![a + b + 2]![2Ĩ ′ + 1])1/2

N ( q,a′′
a′′b′′ )[a

′b′; ab]∇[ 1
2a
′′, 1

2a, Ĩ
′]([a′′]!)1/2[−v]![ a′ − a − v]!

×q
Q1(abb

′′a′′a′b′;Ĩ ′ z̃′)+Ĩ ′(Ĩ ′+1)[a + v]![ b′ + v]![ a + b′ + v + 1]!

[b − b′ − v]![ a′ − v + 1]![b − v + 1]![a′ + b + v + 2]!
(4.12a)

using (3.1b) and summation formula (3.6) of [18] with

p1 = z̃− u− 1 p2 = 1
2(b
′ − b + v)− Ĩ ′ − 1

p3 = 1
2(b
′ − b + v)+ Ĩ ′ p4 = b − z̃

as well as an elementary summation formula of2φ1. Then in analogy with (4.5b), using
the overlap coefficient

(η+,j̃ ′′,+|ηĨ
′,−,−)q = q(a′′−b′)/2+b′′−a′+Q1(b

′a′aba′′b′′;j̃ ′′ z̃′′)−Q1(abb
′′a′′a′b′;Ĩ ′ z̃′)

×(−1)Ĩ
′+z̃′+j̃ ′′−z̃′′H [a′′b′′j̃ ′′z̃′′]∇[ 1

2b,
1
2b
′, j̃ ′′]

H [a′b′Ĩ ′z̃′]∇[ 1
2a,

1
2a
′′, Ĩ ′]

×
(

[a + 1]![a′]![ a′ + b′ + 1]![ j̃ ′′ + z̃′′]![ Ĩ ′ + z̃′]![2 j̃ ′′ + 1][2Ĩ ′ + 1]

[b + 1]![b′′]![ a′′ + b′′ + 1]![ j̃ ′′ − z̃′′]![ Ĩ ′ − z̃′]!

)1/2

× [Ĩ ′ + j̃ ′′ + 1
2(a
′ − b′′ − v)]!(a′ − b′′ − v|q)Ĩ ′−j̃ ′′+(b′′−a′+v)/2

[Ĩ ′ − j̃ ′′ + 1
2(b
′′ − a′ + v)]![ Ĩ ′ + j̃ ′′ + 1

2(b
′′ − a′ + v)+ 1]!

(4.13)

and (5.5) of [18] with

p1 = −z̃′ − 1 p2 = 1
2(b
′′ − a′ + v)− j̃ ′′ − 1

p3 = 1
2(b
′′ − a′ + v)+ j̃ ′′ p4 = b′ − z̃′ p5 = 1

2(a + a′′)
we obtain

(T̃ a
′′ |η+,j̃ ′′,+)q =

∑
Ĩ ′
(T̃ a

′′ |ηĨ ′,−,−)q(η+,j̃ ′′,+|ηĨ
′,−,−)q

= (−1)a
′−a−v qQ6+a′(a′+2)/4+a′′(a+z̃−a′′/4+1/2)−Q1(a

′b′a′′b′′ab;0z̃)

[−v]![ a′ − a − v]![ b − b′ − v]![ a′ − v + 1]![b − v + 1]!

×∇[ 1
2b
′, 1

2b, j̃
′′]H [a′′b′′j̃ ′′z̃′′][a + v]![ b′ + v]!

[a′ + b + v + 2]!N ( q,a′′
a′′b′′ )[a

′b′; ab]

×
(

[a + 1]![a + b + 2]![a′]![ a′ + b′ + 1]![2j̃ ′′ + 1] [j̃ ′′ + z̃′′]!
[a′′]![ b′′]![ a′′ + b′′ + 1]![ j̃ ′′ − z̃′′]!

)1/2

×
∑
u

q−a
′−b′/2+Q1(b

′a′aba′′b′′;j̃ ′′ z̃′′)−u(a+b′+v+1)

[u]![ a + v − u]![ a′′ + z̃′′ − j̃ ′′ − u]![ b′ − a′′ + v + u]!

× [b − b′ + a′′ − v − u]!

[a′′ + z̃′′ + j̃ ′′ − u+ 1]!
. (4.14)
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Similarly, for k = a′ + a′′ − a− v we derive(T̃ k|η−,+,Ĩ )q , (T̃ k|ηĨ ′,−,−)q and, finally, obtain

(T̃ a
′+a′′−a−v|η+,j̃ ′′,+)q =

qQ6+a′(a′+2)/4+(a′+a′′−a−v)(a′−v+z̃−a′′/4+1/2)−Q1(a
′b′a′′b′′ab;0z̃)

[−v]![ a − a′ + v]![ b − b′ − v]![ b − v + 1]!

× ∇[ 1
2b
′, 1

2b, j̃
′′]H [a′′b′′j̃ ′′z̃′′][a′]![ b′ + v]!

N ( q,a′+a′′−a−v
a′′b′′ )[a′b′; ab]([a + 1]![a + b + 2]!)1/2

×
(

[a′]![ a′ + b′ + 1]![2j̃ ′′ + 1] [j̃ ′′ + z̃′′]
[a′′]![ b′′]![ a′′ + b′′ + 1]![ j̃ ′′ − z̃′′]!

)1/2

×
∑
u

q−a
′−b′/2+Q1(b

′a′aba′′b′′;j̃ ′′ z̃′′)−u(a′+b′+1)

[u]![ a′ − u]![ b′′ − z̃′′ − j̃ ′′ − u]![ b − b′′ − v + u]!

× [b′′ + v − u]!

[b′′ − z̃′′ + j̃ ′′ − u+ 1]!
. (4.15)

Hence, we see that all the(
[a′′]![ b′′]![ a′′ + b′′ + 1]!

[a + 1]![a + b + 2]![a′]![ a′ + b′ + 1]!

)1/2

q−R
′N (q,kmax

a′′b′′ )[a
′b′; ab](T̃ kmax|η+,j̃ ′′,+)q

are related to one another through similar substitutions (4.3a)–(4.3c), which should also
be applied to the denominator function (4.8c). Finally, in analogy with the Regge-type
symmetry of the boundary paracanonical SU(3) isofactors [31], we see that renormalized
extremal (seed) isofactors

(a′b′y ′0i
′
0a
′′b′′ỹ ′′j̃ ′′||tmax; aby0i0)q

([a + 1]![a + b + 2]![a′]![ a′ + b′ + 1]!)1/2
(4.16)

are also related to one another (up to sign andq-phase factors) by substitutions (4.3a)–(4.3c),
as well as through their compositions with the usual transposition of the isofactor parameters

(ab)↔ (a′b′) a′′ ↔ b′′ v→−v. (4.17)

The renormalized extremal (seed) isofactors of the maximal null space case

(a′b′y ′0i
′
0a
′′b′′ỹ ′′Ĩ ′′||t = 1; aby0i0)q

([b + 1]![a + b + 2]![b′]![ a′ + b′ + 1]!)1/2
(4.18)

(as presented by (5.14) of [18]) are also invariant (up to someq-phase factors) under the
same substitutions, as well as the seed isofactors with arbitraryt .

5. Concluding remarks

In this paper we have demonstrated the importance of the distinctive polynomial and
q-polynomial properties of definite extremal reduced matrix elements of the SU(3) and
uq(3) canonical tensor operators for explicit analytical construction of the orthonormal
‘seed’ and general coupling coefficients with extremal and arbitrary multiplicity label.
The expansion problem of general canonical coupling coefficients in terms of general bi-
orthogonal isofactors with the subscript-type multiplicity label is reduced to an expansion
of extremal reduced matrix elements in terms of the generalized Wilson–Rahman rational
bi-orthogonal functions as balanced4F3(1) and 4φ3(q) hypergeometric series, proportional
to q-6j coefficients with an unusual distribution of the matrix indices. Recall that seed
isofactors usually serve as coefficients for an expansion in terms of general bi-orthogonal
isofactors with the superscript-type multiplicity label. Composition (3.16b) of the expansion
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coefficients of both classes as overlaps of the generalized Draayer–Akiyama construction
presents an explicit alternative of overlap (2.22b) of [22] and hence a Gram–Schmidt process
that leads more directly to explicit orthonormal canonical coupling coefficients. We hope
that the derived explicit denominator function of the minimal null space case will permit
one to predict the new version of the general denominator function for canonical SU(3)
tensor operators with a possible extension to the uq(3) case.
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