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Abstract. Expansion of the matrix elements of SU(3) and3) canonical tensor operators

in terms of the bi-orthogonal coupling coefficients and overlaps of the Draayer—Akiyama
construction are considered. Special bi-orthogonal extremal isoscalar factors (with subscripts
as multiplicity labels and proportional tg-Racah §-6;) coefficients or the generalized
Wilson—Rahman rational bi-orthogonal functions in terms of balang€gl) or s¢3(q)
hypergeometric series) are used as a natural basis for extremal matrix elements of the highest
weight component of the canonical tensor operators of SU(3) in the generating function approach
of Biedenharn, Lohe and Louck. The expansion that is obtained (triple sum), together with
previously derived asymmetric seed isofactors and elementary overlaps, gives the explicit overlap
coefficients and can be used to derive SU(3) apBucanonical tensor operators as well as
new explicit normalized seed isofactors with Regge-type symmetry, specified for the minimal
null space case.

1. Introduction

The importance of coupling coefficients and irreducible tensor operators of unitary groups
for physical applications is well known. Many analytical solutions of the coupling problem
for the SU(3) and S:) groups (including multiply occurring irreducible representations
(irreps) in the coproduct decomposition) with non-orthogonal coupling (Clebsch—-Gordan
or Wigner) coefficients have been proposed. These results have been derived by means
of an integration over the group [1], projection operator methods [2—-4], and recursive-
recoupling techniques [5-12] (including the construction of explicit bi-orthogonal systems
[9-11]) or by using different generating invariants [13-15] as well as vector-coherent-states
techniques [16]. Some of the methods have been extended to the quantum graxpsd,
particularly to y(3) [18], with the bi-orthogonal coupling coefficients (isoscalar factors) of
the quantum groups expressed as sums involving multiplicity free coupling coefficients [19].
Nevertheless, the SU(3) canonical tensor operator concept of Biedenharn, Louck
and their collaborators [20-23] has not lost its attractiveness, especially for numerical
applications [24]. However, the rather complicated generating and denominator function
technique of this approach [22,23] cannot be easily extended from SU(3)(8, @nd
explicit analytical expressions are still only available for the case of a canonical tensor
operator of rank (11) [25] and for some extremal matrix elements of tensor operators
(with maximal or minimal null spaces) and the corresponding orthonormal canonical
isoscalar factors (isofactors) of SU(3) [26] anfd(3) [18, 27]. Unfortunately, a conjecture
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[26] concerning the possibility of a straightforward construction of the orthogonal SU(3)
canonical tensor operators for non-extremal values of the multiplicity label has not been
confirmed [27], so the general orthonormalization problem for the Draayer—Akiyama [24]
construction remains unsolved analytically.

The concept of bi-orthogonal systems @suskas [11,17,18]) not only leads to
analytical expressions with minimal total number of summation parameters (which in the
SU(3) or Y (3) case never exceeds 6) but also brings a systematic approach to the coupling
problem and allows one to reduce the global coupling coefficients to their expansion
[10,11, 19, 28] in terms of specific boundary (seed) isofactors (cf also [4, 16, 29]) in analogy
with the construction of stretched $8) > SO(3) basis states [30]. Adauskas [31,32]
presented the boundary (seed) isofactors (with highest-weight or lowest-weight values of
definite states) for orthonormal (paracanonical and pseudocanonical) couplings in SU(3).
The corresponding seed isofactors g{3) can be derived by means of a self-consistent
Gram-Schmidt procedure in terms of Gram determinants (cf [11, 12]) formed by overlaps
[18] of the coupled states. (These overlaps are equivalent to some bilinear combinations
of isofactors. Note that in [12] a similar procedure for overlaps, equivalent to some SU(3)
seed recoupling coefficients, is used.)

Definite symmetric and asymmetric seed isofactors are expressed, for the maximal null
space of the canonical tensor operators By as single sums in section 5 of [18] (cf [33]
for a triple-sum formulation) when the asymmetric seed isofactors are extended to a double
sum [18] for the general case of the non-orthonormalized [24, 26] construction. Although
the structure of symmetric seed isofactors was predicted for the maximal null space of the
canonical tensor operators of SU(3) as (20) of [24], the correlation of their structure with
defining relations of the canonical tensor operators [22] in the generic multiplicity label
case is not transparent. Indeed the compositions of two other types of seed isofactors,
(3.9) or (3.12) of [27] (with the maximal isospin states appearing in different positions and
hence correlated with canonical splitting condition [22]), were used for the elimination of
indefinite 0 solutions of the normalization problem (cf (3.7) and (3.14) of [27]) for the
canonical SU(3) and 3) isofactors with maximal null space. However, a general solution
of the system of equations given in (2.13) of [27] is only possible under specific restrictions
(see section 4 of [27] where some inconsistencies of nhumerically distinctive conditions are
discussed) and is not directly correlated with the general null space approach to canonical
tensor operators [20-23] induced by a polynomial structure of their reduced matrix elements.

In fact, overlaps for the Draayer—Akiyama [24, 26] construction fp{3u can be ex-
panded by means of asymmetric seed isofactors, (5.18) of [18], in terms of overlaps, (3.24)
of [18], of dual coupled superscript states, using some symmetry properties of overlaps if
necessary. Unfortunately, the analytic regions of these functions are usually mutually exclu-
sive, although under specific restrictions the overlaps, (3.6) of [11], in terms of a (hon-very)
well-poised series (or their-version [17]) may be more usable. Unlike the case of dual cou-
pled states (for which the analyticity is interrupted by the appearance of superfluous states),
the overlaps of the coupled subscript states are analytical in all regions of the parameter
space, but the labels for expansions in terms of subscript states are not simply correlated
with the values of the usual seed isofactors. Furthermore, some corresponding elementary
expansion coefficients have been derived [18] in different regions by different methods.

In this paper the approach of Biedenhatnal [22] is extended to an alternative class
of boundary isofactors for SU(3) and @). Recall that Biedenharet al used (as their
main tool for constructing the complete set of the denominator functions) the distinctive
polynomial properties of the numerator function of the extremal reduced matrix element of
the highest-weight component of the unit SU(3) canonical tensor operator (projective tensor



Canonical tensor operators of SU(3) angl(8) 7463

operator (5a) of [22] or isofactors)
(abyi’+i(’)||T(,‘,’,b)’|| Yi'y = @b'y'i'sd"b yig\lt aby i’ + i) (1.1)

of the multiplicity M with canonical multiplicity labek. In (1.1), numerator polynomials
of degreeM —t in terms ofi’ +z’ appear which are independentiof-z’. Here and in what
follows we use the same notation for irreps and basis states of SU(3), éBdas was used
in [11, 18, 26, 27] with ¢b) for mixed tensor irrepsg = my3 — mo3, b = my3 — m3z where
[m1s, mo3, m33] is a partition andn,; are the Gelfand—Tsetlin parameters. The basis states
are labelled by the hypercharge= mip+mpo— 2(mis+mas+mag) (0r z = F(b—a)—3y),
the isospini = 3 (m12 — myp) and its projection, = miy — 3(m12+mzy). The parameter
(orj= %b—z [3,16]) is frequently more convenient in explicit expressions thabecause
linear combinations +z > 0,a+z—i > 0,b—z—1i > 0 are integers and in many
situations we can avoid inconvenient fractions. For the state with iapirf the coproduct
(a'b")®(a"b"”) decomposition; = 7’+z"+v, where again = %(a'—b/—l—a”—b”—a—i—b) is an
integer. The parameters of the highest weight state (HWS) take on the yalue%(aJer)

ip = %a = —z0, While for the lowest weight state (LWS), = ——(2a +b), ig = —b =720
and for the maximal isospin state (MIS), = l(a —b), im = (a +b), zm = 2(b —a).
The multiplicity M of the tensor operatorE“/b/ f, with fixed shlftSa —a’ andb — b’ may

exceed the multiplicity- of irrep (@b) in the (a’b) ® (a”b") decomposition (see [18, 27])
and the lowest values of the canonical multiplicity labehay be eliminated by the null
space inclusion property [22].

We doubt whether the cumbersome generating function technique of [22] based on
polynomial properties of (1.1) can be extended straightforwardly, ¢8)u Nevertheless, the
modified [26] Draayer—Akiyama [24] construction and explicit expressions of the extremal
canonical isofactors [18, 27] insures an analytically distinctjvpolynomial structure for
the reduced matrix elements

(abyi' +if ||T(f,’ ,,” 4y, (1.2)
of the y,(3) twisted [34] tensor operators
= (a"b" ) t=k+1.q — [T kb, q (@’ —kb'=k)L, q](a 'b")q (1.3)

ninin VA

Yl Yl
which are derived by means of the stretched [19] coupling of the auxillary canonical

tensor operators. Operatdifl:n’ib P14 with maximal null space in (1.3) insures the

full shifts of the y (3) irrep parameters and the null space inclusion property of §li&)u
canonical tensor operators (after eliminating the superfluous tensor operators by means of
the orthogonalization process of (1.3) starting from the maximum valug, ofhen the
self-adjoint canonical tensor operatdl"'g’;),iz" have minimal null space [18] and give trivial
(zero) shift of the Y(3) irrep parameters, as well as zero shift of th€Ay irreps for maximal
value of jo =k =1 — 1.

In this paper we exploit the rather simple algebraic structure of extremal isofactors,
related to the right-hand side of (1.2), but with a multiplicity labelling of a different kind. In
section 2 a natural basis for extremal matrix elements in terms of the bi-orthogonal extremal
isofactors(a’d’y’i’; a"b” y(i ”||+ 7 43 abyi’ +ig), with subscript is proposed. (Here and in
what follows the+ and — signs and their positions in the multiplicity labels (subscripts)
+,j".+; — +,J or I',—, — indicate the signs and positions of the extrergalz or
7”, that is, the LWS and HWS in the corresponding isofactor.) These special isofactors
are also proportional to definitg-Racah §-6;) coefficients as well as to the generalized
Wilson—Rahman [35] rational bi-orthogonal functions in terms of balanégdl) or 4¢3(q)
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basic hypergeometric series. Hence the expansion may be inverted. In section 3 the
composition of (1.2) and the above-mentioned inverse expansion is considered. After
a rearrangement of the single and multiple sums we find an explicit expansion of the

matrix elements{aby i’ + ig ||T(f,‘f’ )"’||a/b/ 'i")q by means of a triple sum in terms of

isofactors (a'b'y’i’; a"b" y(i ”||+I +,abyl + ij),. Finally, overlap coefficients for the

non-orthonormal tensor operatofy:; ,,”,,)’ =<+ which are y(3) or SU(3) unit canonical

tensor operatord,* "¢ after a Gram—Schmidt procedure, are given. In section 4, these
results are specmed for explicit normalized boundary isofactors with the multiplicity label
corresponding to the minimal null space case. These extremal seed isofactors are presented
in terms of3¢,(g) or 3F>(1) series, with the normalization function in terms of the double

sum related to @-extension of the denominator polynomial [23] of the SU(3) canonical

tensor operators.

2. Rahman'’s bi-orthogonal functions and alternative expansion of bi-orthogonal
coupling coefficients

We use the Cartan—-Weyl generatdts (i, j, k=1, 2, 3) of the unitary quantum algebra

u, (3 = U,(u(3), with genericq and composite generators expressed in terms of
g-deformed commutators, which satisfy the commutation relations [19,27] and the
corresponding coproduct expansion rules. Here and in what follaysard [x]! are,
respectively, thej-numbers and,-factorials,

[l =("—¢/@—q" (x]t = [x][x — 1] ... [2][1]

n—1

@ =]Jle+k [ =[0] = (@lg)o=1 (2.1)
k=0

which are invariant under substitutign< ¢ .
Perhaps the simplest expression (without sums) is for the isofactors

(a/ / //’ " //y(/)/l(/)/”p abyl +lo)q
with multiplicity label of the superscrippb = —, +, J type. These particular coefficients
can be derived (applying isofactor symmetry) by means of (4.6) of [17]. The expansion
problem in terms of such superscript isofactors is solved [18] by the usual seed isofactor
technique. For an alternative expansion, we first rearrange the bi-orthogonal isofactors

(Cl/b/ /s / //b//y//i/+ %Cl||_+j;dbyoio)q
= Z(n_+,|n,,__>q<a’b’ i'sa"b"y"i' + 3l abyoio), (2:2)

expanding the nght-hand side isofactor (expressed in terms of strejeBgdoefficients—
(4.6) of [17]) by means of the overlap matiix_ , ;ln; _ ), (given in terms of a balanced
5F4(gq) hypergeometric series—(3.7) of [18])Using a new version (cf (3.6) of [18]) of the

T Note that in (321a) of [18] the signs ofA}, A} and A% in the upper entries 0§Fa(g,1) should be the
opposite of what is given; the definitions af; in (3.21b) and pg in (3.25) should be corrected (byl and—1,
respectively); the bottom entrt N1 — B of 5Fy in (3.22b) should be changed te N1 — B + 1; the first factors

in (4.1542) and (415b) should be replaced by @~ ®+2; parameten should be omitted on the right-hand side
of (5.5); an additional phase factor1)¢+4"~4+ should be included on the right-hand side of (5.11) and appear
instead of(—1)¥ on the right-hand side of (5.14) where thesxponent parameter’ also should be replaced by

a; (@' +a” + a — v) should be replaced by:(+ a” —a — v) in (5.13) and (5.16), with the opposite signs of the
termsbv and I”(I” + 1) in (5.16).
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summation formula (cf (2.4.2) of [36]) of a special very well-poised basic hypergeometric
seriesgps (0r 5Fy),

3 [2) +1lj — pr— Pttt
— Tpr+ )+ 1p2— /Mpz+j + Wps — M ps+j + Wpa— Mpa+j + 11

[p1+ p2+ p3+ pa+2]
= (2.3)
[Ti<ken<alPr + pu + 1]
we obtain an expression for (2.2) as a single sum in terms of a balajfeeg) or 4¢3
hypergeometric series. After using the isofactor symmetries, a natural basis for extremal
U, (3) and SU(3) tensor operators can be given in terms of the biorthogonal isofactors with

subscript+, j”, + correlated with the LWS of the first and resulting irreps:

"yt eI

Cirpelny 5o g = @b Y15a"D " ygiglly 50,5 aby i’ +ig)g
= Y @bypiq a"b"y" " |lt: abyoio), @b'y'i"sa"b"ygigllts abyi’ +ig),
t
_(b—z—il[b—z+i+1][i +2]'[i —z])Y?
[a' +a’ —v+1]'V[3b — 2, 31, 0]
(2] + 1[j" — 21) g2 R w
([j" +ZHY2V[3b, 3b', j"1H[a"b" j"Z"]
. (—})”*5[7’ + 7 45N +v—sl[d +a"+7 +i —s+1]
—SPj =7 =sP[—v+sl[i+z—sl[d+a"+b—v—s5+2]

(2.4)
wherez” = 3(b—b)—v,i+z=i+7 +v,
Z’=%(a”—a)—v Z=%(b”—a’)+v)
and
W =[a+1][a+b+2](b+1][a]a+ b+ 1][a'][a’ + b + 1])Y/?
< [2i' + 1) + 2" — i'M[a"N[b"M[a" + b" + 1! >1/2 2.5)
[2i + 1)@ + 7 + i’ + 1) [a+z —i][a+z+i +1]! '
[a+b—cl[a—b+c][a+b+c+ 1] 12
V]abc] = 2.6
[abe] < [6+c—a] (2.6)
Hlabizl = [a +z—illa+z+i+1[b—z—il[b—z+i+1]HY? (2.7)
Q — Ql(b/a/aba//b//; j’//zn) + %Z/(SZ/ + 2(1/ _ Zb/) + %(az _ a//Z) _ %a/b/ _ b/
+3@+b—3d —a"—b") (2.8)
R=3@@+2)Ga" +b") — 3d"i' (2.9)
Q1@b'a"b'ab; Jz) = Q1(b"d"Vd'ba; J, %) = H{J(J + 1)
+7(32+2a—2b) —ab+ (' +b")+a" +b —a—b}. (2.10)
Using the notation [37]
iiF |:0‘1’ @2 - Opl, ,x] _ Z (a1|q)i(a2|q) - - - (Ofp+1|61)kx;c 2.11)
Bi, -5 Bp — (Bl - Bl (gl
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with x = g**+D ¢ = —1 for the balanced series) instead of the standard definition [36
q
qal’ quZ, ey thp+l ) 01,002, ..., 0p41 L 12 (e=1))2
p+1¢p|: qﬂl,.._,qﬁp 54,2 —p+1Fp ﬂl’_..’ﬂp . q . q Z (212)

we see that the sum on the right-hand side of (2.4) corresponds to a balgadmakic (or
4F3(1) classical) hypergeometric series and is proportional to the balanced series

— ]+ )+ 41 —i—z,—d —a" —b+v—2
aB| T TR oo 1q.1]  (213)
b —v,—v+1,—-a —-d" —-i"-7 -1
or to theg-6; coefficients
1 1
{ 5b' sb
s@+d' +i'+74+1) Ja+b +v+i'+7+1)
j//
1, " -/ ’ } (214)
s@+ad"+b—-i"-7+1)—v),

with j” — z” and i’ + 7/ appearing instead of the matrix indices of the generalized
Wilson—Rahman [35] bi-orthogonal functio®?[x] and S?[x] in terms of the balanced
(basic) 4 F5 or 4¢3 hypergeometric functions. We note that the appearance of the second
matrix indices on the top and bottom rows of (2.13) is rather unusual for Racah coefficients.

In accordance with [35], the dual function appearing in this case is proportional to the
balanced series

_ s 7, iy sn 1, - ’ i’ b’ 3
JFs J L+ + +z +1 a'+ + v+ 0.1, (215)
b —v,b—b —v+la+bdb'+i+z+4
For proof of the bi-orthogonality in the generglcase we may use the relationship

(D[ + 7+ s +v—sl[d+a" +7 +i —s+1[i" + 2]
VHZ;FUM/[ﬂWﬂ—Z”—ﬂﬂ—v+sMi+z—ﬂﬂw+ﬂ”+b—v—s+2ﬂ

8 (D" +2 4T[0 +v—sNa+b"+v+s +2]

M1 =7"—=sb—=b —v+sNb —7 —i —s']!
[b—z—illa+D +b"+ v+ 3]
X[a—l—b”—i—i+z—|—s/+3]![a’+a”—v+l]!
:piﬁ%%ﬁﬂﬁﬂ+?m%w+fq—7T@@+b3+7+1p
' [2;”+1][j" =21

The sum over’ + 77 = i + z — v is summable in terms of a balanced, (or 3F>(1))
hypergeometric series, with the remaining sums also turning into a balgpgddrm.

This bi-orthogonality relation may be reformulated for the usged; coefficients
[38,39]:

(2.16)

a b e a b e
;{%x—}—k %x r—%x}q{%(x—i—l)—i—k %(x—}—l) r—%(x—l)}q
X([Ze + 1][2¢' + 1][a — b + €]'[b + €' — a]!
[b+e—al]la—b+e]
[k — e+ x]'[k +e +x +1]! yﬁ
[k—¢ +x+1[k+e +x+2]!
= bw(r—a+a+r+2r+k—b+1][b+r+k+2)" " (2.17)
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with the dual relation written as follows:

Z[Ze+1]{a b e} {a b e} < [d+c—e][d+c+e+ 1] )1/2
9 q

-~ d c f d ¢ f [d+c —e[d +c +e+1]!
= —8aga-12(c" + f —alld + f +a+1]
x[d + ' =blld' + f +b+1)~? (2.18)

wherec—c¢' =d—-d = f' — f.
Now using the same notation (2.5)—(2.9), the matrix for the inverse expansion in terms
of the coupled statels), 5 ,), may be expressed as follows:

(™" 1)y = (D2 a4 b 4 b+ v + 3] H b E]
Y = Y -2 4 N+ 2 - N2 + 10" - )2
qQtRWV[b,13b, j'1VIi, b — z, 361" + Z/]HY/2
(=[] +2" +sTNb +v -5
Z [N =z —sNb—b —v+sNb —z/ —i — s
8 [a+b"+v+s+2]
[a+b"+i+z+s +3]

(2.19)
with

S NN Gz ng o Dg = 850 (2.20)

i'+7'=i+z—v

Since the isofactors with— z =i’ — 7/ +ad” — v andi + z =i’ + 7 + v are used, we may
take eitheri’ — 7/ > 0 ori — z < a. In both cases, conditions+z —i >0ori’— 7 >0,
respectively, imply that the non-vanishing isofactors (2.4) or matrix elemdtd) and
inverse matrix (2.19) may exist only far — a” + v > 0. The ‘local’ bi-orthogonality

relation (2.20) in general is more convenient than the global bi-orthogonality relation of the
dual isofactors

(a/b/y/l-/a// ”y”l.”||+’j”’+; abyi)q (a/b/y/l-/a// ”y”l.”||+’j"7+; abyi)q = 6;",]” (221)

Vi'y"i"

which may also be used (especially with= y,, i = ig, when the first isofactor is
proportional to theg-Racah coefficient) for expansion of arbitrary isofactors in terms of
isofactors with subscript, J”, +.

Note that the bi-orthogonal classical Wilson—Rahmag(1) series also appeared in the
inversion problem for overlaps of the dual projected(@Ub> SO(n) states [40], where the
bi-orthogonality relations

[ (b—s+1)ab+s+2) ]1/2 1 [ (+ N —k)! T/Z
@b—-2j+1)(20-2j+3] 1+ +k+DIG —k+D!
x(j, kys,—klb—j, 00+ 1, k;s,—klb— j' +1,0) =4 (2.22)
Z[ (b — 5+ D2b + 5 + 220 + ! — b)! T/Z
(2b—2j +1)(2b—2j + (' + k+ DI’ — k + 1)
x(j.kis,—klb—j, 00 +1 ks, —k'|b—j+1,0 =6 (l+ o) (2.23)

of special SU(2) Clebsch—Gordan coefficientsfge 3s were also derived using the relation
[41] between specialF3(1) andzF»(1) series.

J

1 This situation is not observed in [22].
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3. Bi-orthogonal expansion of canonical tensor operators

We will now introduce new expressions for SU(3) and3) canonical isofactors for arbitrary
values of the multiplicity labet. An expansion for these coupling coefficients in terms of
bi-orthogonal isofactors with superscript +, I is given as (5.18) of [18]

1
@by (@ —k,b"—k) (ab)
k+1
kk)  (@b_,; (@b

(T*In_ . g =Us
q

(@'b) (a”—k,l b —k) (ab)
- Z Us +1

k t
t=>k+1 (k k) (Cl b) (a//b//) .

x(@'b'yit; a"b"yyiollt; aby i), (3.13)
_([a+1[b+1][la+b+2][D])[a"+ " + 1]!)1/2F[abfZ]V[?gi61~]
- (6" IY2N ()l ab]
(=1)¥'—a"=R)/2=T+] g Qs (j+D=j' (' +D+31 (T +1) /2
x %: Vz[%(a” — k), %a’, j]Vz[%(a/ +a’"—a—k) —v, %a, Jjl
5 [2) +1][2)' +1]
b—v+3@+a —k)—j+1b—v+ i@ +a" —k)+j+2]
5 V3@ +b") —k j\ ]
VI — k), 3a’, j1VA 3k, j/, 1IT2abj’ 7 — 3k]
with two ‘braided’ sums resembling the very well-poisgd and11¢10 basic hypergeometric
series and the correspondiggphase

Q=0 —v+DP +b"—b+v—k) — %(a’+b”—k)(a’+b”—k~|—2)

—%{(a” —ka+b —a"+k+v)— 0" —k)B" —b+v—k))}

—Ha+b-b b —v+ka+b-b -0 —v+k+2)

—3k? + 3k + 3kZ 3.2)
(see (5.19) and (5.8) of [18]). Overlaps13d) correspond to the solution of a boundary value
problem which involves a recursive construction (1.3), a recoupling technique analogous
with (2.13) and (5.1) of [26], and expansion coefficients of tensor operdjrs = .
Hence they are part of the special recoupling coefficientszjwith ‘mixed” multiplicity

labels) and are equivalent to superpositions of ‘seed’ isofactors 1h)(3Here and in what
follows the renormalization factor

D(, 45 Ola'b: a bl DY Hab; a b]
[a" — KJI[b" — K] ([k]))Y/

is expressed in terms of the denominator funct'@r@ﬁf)[. ..][18, 27] of the y (3) canonical
tensor operators with maximal and minimal null space, respectively. The summation
parameterg and j’ are restricted as follows:

max3(@ —a’ +k),a+v—3@@ +a" —k) < j

(3.1b)

NG )a'b'; ab] = (3.3)

< min(3(@ +a” —k), 3@ +a" — k) —v) (3.4a)
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maxi(a' —b" +k), 3 ="+ k) —v, [ -3k < j’
<min(3@ +b" —k), 30" —a —k) +a+v, I+ 3k). (3.4b)
The summation intervals do not exceed
min(@”,a” —v,a’ +a" —a—v, b’ +b" —b+v) —k
for j and
min”,b" +v,a—a +b"+v,b—b' +ad" —v) —k
for j' (cf the elements of array (3b) of [27] or (28b) of [18] which characterize the
canonical tensor operators—see5@) of [27]).
Since the stretched coupling in this case is trivial, the expansion coefficients of the

twisted tensor operato B.2)"=*+14 in terms of non-orthonormal tensor operators, which

Y]
correspond to coupled statgs, ;. )4, can be expressed as overlaps of elementary reduced
matrix elements

~ T T . ’ . . ~(a" b=k 1, ’ .
(T 0y = Y e aby i +ig T T Y, (3.5)

Yo
i'+z7'=i+z—v

0y ekt =k L, o
= Z (abyl’—i—lgHTk’k/é Nlab, y —k,i’ +if — 3k),
i'+7'=i+z—v

i e i
x(ab, y — k,i' +ig — ST A =0y i (T e ), (3.5)

with inverse expansion coefficients (2.19). The first reduced matrix element5b) (8
expressed without a sum by means of (4.18) of [18], when the second special (stretched)
reduced matrix element of the maximal null space tensor operator5b) (8 obtained as the

next step. Equation (3.1) of [27] (together with (3.5) of [27] and the denominator functions
(3.7) or (3.14) of [27]) for such extremal values of the parameters has fixed summation
parameters:’ =i’ and j' = (b — b” — v — 7' + i’ + n) and gives

aby i’ +igll Ty~ Nla'b'y'i"), = @b'y'i's a"b'ygigllt = 1; aby i’ +ig), (3.68)
(a4 16+ la + b+ 2][2i" + 1]1[i + ]'[i — z]H)/?
DD ab)([2i + a” + 1+ 20— 2])Y2

[a+z+i+1)[b—z+i+1)[a +2 —iT[ —2 — i\
<[a +z—il[b—z—il[a +2z +i'+1][b' —2z' +i' + 1]!)
(=DrtregQetdmig L h4py +ny+ 2)1[b —z — i + ny)!
Z [n'[n2][a + n1 + 1D + no + 1) [a + b + ny + 2]!
[a—a"+v+n][b—ad"+a+v+n+ 1]
X[a+b+n2+2]![a’+a”—a—v —m)[b'+b"—b+v—ny]
[b—b"—v+n[a —b"+b—v+n+ 1]
=0 —v—z —i'+nlatb—a’ —b" +n1+nat 1]
with i =i’ +ig, i +z=1i"+7 +v and
Or=3d"@a—a"+v+7 —i)+ 3" (b—b —b"—v+d + 2.
Expression (3b) resembles (Ib) of [27] for the denominator function, but the second

sum (overny) is of balanced¢, type, instead of the unbalancgeds. The sum oven; is
indefinite fora — a” + v < 0 when non-vanishing values of.@®) are impossible.

ni,n2

(3.60)
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After inserting (36b) into (3.50), the summation interval over + 7/ = i +z — v
is indefinite (the restricting;-factorials of the,s¢s series cancel in the numerator and
denominator). Therefore, it is reasonable to use the hook permutation symmetry [42] of the
matrix elements under the substitution

(a,b) > (—a—b—-3,a) @,b)— (—a’=b —3,a)
v—>a—a+v z—a+z+ 1 3.7)

Because of non-invariance under (3.7) for the initial definition of the denominator functions
[27], the g-phaseg 22 needs to be amended lgy* @+?+2 After inserting the last factor
of (3.5b) in the new version, we find the following expression for the matrix element:

a//b//

(aby l-/ + l(/)/| |fy(gi8 )t:k+1,q||a/b/y/i/)q

= (a'byi'sad" — kb —k,y5 —k,if — 3kllt =La, b,y —k,i' +if — 1),

x(a,b,y —k,i' +if — ki kkk 3k||t = k + L abyi' +ig), (3.89)
_ (=)
D(,. 5 )la'b; ab] D(T ) ab; ab)

5 <[a + 1[b + 1][a + b + 2][2i" + 1]![i + z]![i — 2]!

[2i +a” + 1K [ + 2] [ — 2]
la+z+i+1[b—z+i+1][a +2 —iT[ —z — i\
la+z—il[b—z—illa +2 +i + 1] —z/—i-i/—i-l]!)

" Z (=1 *2g%[b — ng)'[a + b — ny + 1][b — ny]!
[n[n2][a” = +b—v—k —ni]' [0 + v —k —ny)!
5 [b+a"+b"—2k —n1—n2+1)'[a’ = b" — v+ k + ny]!
[b—n1—nla’ +a”"+b—v—k —n1+2[b' + 0" —k+v—ny+1]!
[ —k+i+z—n]
“Ta"+b—v—k—ni+ 1i + 2 —nal'[a + 12 + 1] (3.80)

ni,nz

where
Oz3= (" —kn+3@ —k(-a—2b—4—a"+v+k+7 —i)
+30" —k)b—b —b" —v+a +k+2)+ k(k—3i+z-3). (3.9)

The sum oven, in (3.8b) corresponds to the balancefl;(¢) basic hypergeometric series
and forms theg-polynomial structure resembling (2.4), as well as the corresponding sum
in (3.60).

Now we return to the composition .&) of (2.19) and (3b) for which thes¢, type
sum overi’ 4+ 7’ (balanced fok = 0) may be rearranged in accordance with the symmetries

and different versions of expressions for the Clebsch—Gordan coefficienjg2f[43—45]
or u,(1, 1), as follows,

gD —k —na+x][a+x + 16 +v—x]'  [k]'[p" —K][a+b +v+ 2]
Xx: [0 +v—s"—x][x —na)'[a+ D"+ 5 +x+ 3] - [0 +Db"+a+v+3]
[a+na+ 1[0 +b" —k + v — np + 1]\g* O+ Hatvd—k('=s)
XZ [sND +v—np—s —s]l[k —s][a+n+ s +5+ 2]
[s" 4+ s]!
" —k+s +s+1]!

(3.10)
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in a such way that the new interval of summation is additionally restricted fhence it
is finite for a tensor operator of fixed rank) and the sums ayeandn, turn into 4¢3 type
sums, one of which is balanced. (However, its expression in terms6gf coefficients is
probably not helpful for further simplification.)

After replacings by s” — s/, in analogy with (3.17) of [26] (in contrast with a failure
to rearrange the denominator functions7(g of [27] in the y,(3) case) we may use the
standard¢; summation formulae [36, 39] and rearrange this double sum in the composition
(3.50) of (2.19), (38b) and (3.10) as follows:

3 (=1yntnzg@=bmip — pillla + b — ng + 1][b — ny)!
[na][n2'[b — n1 —n2]'[a” — b+ b —v—k —ng][b" + v — k — ny)]!

ni,n2z

[b+a"+b"—2k —n1—ny+ 1]
X[a’—l—a”+b—v—k—n1+2]![b’+v—n2—s”]!
» [ —b" —v+k+n2

[a"+b—v—k—n1+1])[a+n2+s" + 2]!

(_1)ﬂ1+n2+51qn1n2+81(b—ﬂ1—ﬂz+1) [b— sq]!

2 [s1)![n1 — s1]![n2 — sa]'[b' + v — np — 5"]!

ni,n,s1,52
g @ Pmg 4+ b — ng + 1N (—D)P ke[ — gl
[@"—b' +b—v—k—ni][a+ny+s"+2]
q752(21(711”7b"7b+n1+n271)7(b”+v7k7n2)(a’+a”+b7v7k7nl+2)
X
[so]la’ +a”"+b—v—k —n1—s2+2)[0" 4+ v —k —ny— s2]!
_ l[a+d —a"+v+k+1]! Z qsl(s”+1)+52(b/’_k+5'/+1)
N [a+b +v+2] [sa)'[s20'[6” + v — k — 51 — s2]!

(3.118)

(3.11b)

51,82

q " +v—k)(b'+v—5")—(a'—a—v) (@' +a"+b—v—k+2) (— 1)a”+b”7b’+b+s1+sz

[0 +v—s51—s"Ma"—b +b—v—k—s]
[6—s1][a’ — s2]l[a” +b" — 2k + v — 51 — s2]!
[a@+a"—a—v—k—s][a+b'+v—k—s2+ 5"+ 2]
(_1):;”+b”—b/+bq(a—a’-'rv)(a+b’+v+2)+a”(b”+v—k)[a +b —ad"+v+k+1]
- [a+b +v+2[b +v—sTa+b +v—Fk+s' +2]
y [b—b —v+s"[a" —k] Z (—1)rgriath'—a"totkt2)
[a—a +D"+v—k+s"+1]! =~ [n]'[a' +a" —a —v —k —n]!
[@ —n][b—-b"—v+k+n]a—ad +b"+v—k+s"+n+1]!
[6"+v—k—nla—a +v+nlla—a —a’ +v+k+s"+n]
(3.11d)

(3.11c)

After we replace someg-factorials in (311c) as follows,
[@" +b" — 2k +v— 51— s52]!
[a"—=b +b—v—k—si)l[a’+a’" —a—v—k —s]'[0" +v—k—s1— 5]
— Z{[a// _ k]!q(a’+a”—a—v—k—sz)(h”+v—k—s1—s2)—(n—sz)(a”+h”—2k+v—s1—s2)}

x{[n —s]'[a +a" —a—v—k—n]

x[p" +v—k—s1—nlla—d +v+n])?
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the summation oves; and s, is possible. The double sum in.{3c) corresponds to a
g-version of a special Kampe de Feriet series rearranged (up to an addiigptase
factor) in analogy with the relation
Z (=1 HsgrataitD=s+ D2 _ Wi —i' +i" +s][a” — v+ ][a — ]!
e~ [sPLi+i" —i = sPr Mo —r i =2/ —s =i =i +i" —v+5 + 7]

_[@" =v][a+v+1)[i" —i" +i]!

N i +i” —i][i — 2]

(=1)"q" @ =20 + 2/ + n]'[a’ — n]'[i — z + v —n]!
<D
 [n

Mv—n][i’—z —nl[i+z—v+n]{a+v—n+1]! (3.12)

(cf [46]) which follows from the expressions for the stretchg®; coefficients (cf the
g = 1 case of [38]) or (4.5) and (3.16) of [19] for the multiplicity-free isofactors
(@'b'y'i’; a"0y"i"||labyi), of Uy (3) with b” =0,a+2b =a’ +2b" +d”.

Finally, the expansion coefficients.a) may be expressed as follows:

1
@v) @ —kb —k) (ab)

k+1 -,
(k k) (abyt7-+ (@"b")

B (—1)7" T a+b —a" +v+k+1]!
N(Gsla'b's ablVIZb', 3b, j1([J" +21H2
y H[a//b//j//z//] ([2_;” + 1][‘;// o Z//]! )1/2
([a +1[a + b + 2)[a]'[a’ + &' + 1 [a"][ "] [a” + b" + 1]1)V/2
(_1)n+s’qR+(s”—s’)(h’+h”+a+v+3)+k(s’—b’)+n(a+h’—a”+v+k+2)

x Z,[n]![b”—}—v—k—n]![a’—i—a”—a—v—k—n]![a—a’+v+n]!

n,s’,s"

(T*In™7"%), = Us (3.13)

q

N ) U R S ) | WA ! Ol R R
[sSNJj"—=7"—sPb—b —v+sNs"—s[k+s —s"]
y l[a—a +b"+v—k+s"+n+1)[a+b"+v+s + 2]
[a—a +b"+v—k+s"+1[b +v—s"[b"—k+s"+1]!
[0/ +v—sT]
X[a—a/—a”—i—v+k+s”+n]![a+b”+v—k+s”+2]!
with the same renormalization factor (3.3) and thphase
R=-0+d' W' +v—k)+30" —k@ -b -b"+b—v+k+ 3@ —k
x(—a—2b—ad"+v+k—dH+@—d +v)Va+b+v+2
+3k(k —2a" +v—3) — 2(a —a" + 2v)(@" + 2b")

(3.1%)

with Q as defined in (2.8). We see that expressiori¥® is more symmetric than the
expressions for the denominator functions [18, 27]: it is invariant under permutations of
parameters of subarray .Bb) of [27] which restrict the number of independent tensor
operators and the summation interval far However, it is more convenient far < 0,
when this interval fom coincides with M — k — 1. Specifically, for the canonical tensor
operator with the minimal null space (which, in general, is not self-adjoint)vafd), » is

fixed. The summation interval for is restricted by min[” — z”, j" — %(b —b")] and the
differences” — s’ > 0 is restricted by. Hence, they both do not exceetl. Although the

sum overs” for M —k = 1 andv > 0 resembles the Minton formula [36], they are not
equivalent.
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The conditiona — a” + v + k > 0 for the non-vanishing of special isofactors (2.4) or
matrix elements (1.1) in (33b) is not necessary (contrary to the case of the denominator
function (37b) of [27])—expression (A3b) is indefinite (with possible negativefactorials
in the numerator) only for both—a”+v+k < 0 anda’—b" —v+k < 0, conditions implied
by the null space of the operat@)rf(,]‘,‘;(;,i;)’:k*l"’ (cf array (13b) and subarray (5b) of [27]).
Forv>0anda—a’+v+k <0o0ra —b" —v+k <0 the use of the isofactor symmetry
relations (42a) and (42b) of [27] (possibly with transition to the overlapf’(m"f”*‘)q)
may be required.

The separate series gp3 and s¢4 type in (313b) are rather remote from balanced
ones, but a considerable number (ten) of the triadic correlations between their parameters
appear (resembling those which were used to rearranféa(3into (3.11c)). Although for
k = 0 the sum oves” = s’ can be accomplished in terms of a balangg¢giseries, attempts
to rearrange thé& > 1 case was unsuccessful. Note that the ove(léﬁnﬂ'"v*)q may
also be derived as a single sum (in terms of very well-poised series) as a composition of
the overlaps(nj,!TwT|n”’*’*)q (with J' = ip — i}, see (4.4) of [18] and (3.8) of [27] for
renormalization) anc{n;,’_y_|n+’f”~+)q (written after applying the symmetry properties to
(3.1p) of [18]).

Using our overlaps (33b) and (31c) or (5.18) of [18], the general reduced matrix
elements of operator (1.3) can be expanded in terms of the general bi-orthogonal isofactors
as follows:

(abyi|| Ty "= a'b y'i'),

= Z(f"|n+:j”v+)q(a/b’y/i’; a"b"y"i"||, 5, abyi), (3.14)
>

= Y THn_, @by’ a""y" "7 abyi),. (3.1%)
I

The general overlap of the coupled tensor operators (1.3) may be expressed in terms of the
auxillary overlaps as follows:

Sk K (@b =kt L, /s (@) =k L, .
(THT)g = Y abyil|TS "= a'b y' 1) g abyi | Ty =9 1a'b' YY), (3.150)

WEYINEV

yi'y"i
_ q_syldg[a//b//][Zi + 1] (abyi||T(a-ub”)t=k+l'q||Cl,b/y/l',)
vis_,  dslabll2i” + 1] Vi ‘
x (abyi || TP =44 10py iy 3.1%
Vi q
= Y (T gy o g o g TITE, (3.1%)
;//’j//

where the auxiliary triangular overlap matiix, ;.  |n, j. ), Mmay be expressed by means

of (3.7) of [18] using the symmetry properties [27] of the boundary isofactors. (Recall
that (315¢) may be used for numerical orthonormalization andl%8) was only used
effectively for overlaps of self-adjoined canonical tensor operators—see (4.14)—(4.15) of
[18].) Nevertheless, the bilinear combination g{8) canonical recoupling coefficients and
overlaps of the coupled tensor operators may be expressed more simply in terms of the
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following overlaps:

@b’ (a”—k,1 b —k) (ab)
> o

/ k+1 t
t>max(k,k’) (k k) (Cl b) (a//b//) .

1
(a/b/) (a// _ k/, b// _ k/) (a b)

xUs (3.169)
kK+1 t
(k/k/) (a b) (a//b//) q
= (THT )y =Y (@ ™" gy 5o I~ g (-, 71T, (3.160)
jii

with the auxiliary overlap matrix

. - |77_’+’i)q _ qQl(baa’b’b”a”;f”,—Z”)—Ql(h”a”b/a’ba;f,—i)—b’/Z—a’
+,J"+ -

V[ b lb J//]H[a//b//]//~//]
V(ia', 3b", 1H[abIZ]

X( 1)b —b+("—d’ )/2+I

y < [allla+b+ 1 [aT[ ] — 211 + 225" + 1] >1/2
[a"[a” +b" + 1P[BT[ " + 2N T — 2D + 1]

[21 + 1[I + "+ 3@ —a" +v)]'(a—a" +vlg);_ Pt @ —a—uv))2

3.17
[[—j"+ 3@ —a—v][I+] +3a —a—v)+1]! (3.17)

expressed by means of.{8) of [18] using the symmetry properties amd_’+!,~|f"’)q

presented as (B¢). The sum overj” in (3.16b) is equivalent to the very well-poiseg;
series which may be transformed into a balangggiseries (cf (2.5.1) of [36], or (6.10) of
[47]) but is not equivalent to g@-6; coefficient. Note that the overlap

(TOT")g = b0 (3.18)
is trivial, since\",,"="¢ coincides with the unit canonical operatf,," =" which is

orthogonal to eacIT(ff e

Finally, a solutlon ‘of the system of equations1@:) and (316»), beginning from
k = M — 1, allows us to orthonormalize the operatdrg‘ /,”/,” =14 and to expand their
reduced matrix elements (using Gram determmants cf [22]) either in terms of the bi-
orthogonal isofactors with subscrigt, j”, + or in terms of the isofactors with superscript
—,+. 1, as well as in terms of the isofactors with supersc#ipt”, +, which corresponds

to the solution of the seed problem in [24].

4. The ‘seed’ isofactors of the minimal null space case

Let us consider separately the overlap matrices and ‘seed’ isofactors for the canonical tensor
operators with the minimal null space, i.e. for= M — 1. The expression of expansion
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coefficients (3L3b) with k = M —1 may be simplified considerably for< 0. Particularly,
for k = b"” 4+ v we obtained
(_1)b”—2”—j”q H[a”b”f”Z”] V[%b/, %b, j//]
N("f:;”)[a’b’; ab]
[b1[a’ + b — v+ 1]
X
[—v]l[a —a’ +v]{[b) — b+ V]I [b +1]'[a + b + v+ 2]!
< [a102)" + 1]1j" — 21! yﬂ
X =
[a+ 1] a + b+ 2]Y[a’ + &' + 1] a"P[ 6" a” + b” + 1] j" + 7]
Z (_1)xq(b”+v)(a+v+2)—x(a+2)[b// _ x]![a +b +v4x+ 2]!
X = = .
= [x]![b// _ ZH _ j// _x]![b// _ Z// + j// —x + 1]|[b _ b// —v +)C]'
(4.1)
For this purpose, in analogy with the transformations o£13)—(3.11c) (cf also [39]), we
rearranged the sum over s’, s” of (3.13b) as follows:
[a'T'[ b]! (_1)s’q(S’l’—s’)(b’+b”+u+v+3)+(b”+v)(s/—b’)

[a —a + V][0 — b+ ]! SN[ — 2" — b —b —v+s][s5 — ]

"’b// ,TH,
(T +v|n+,/ +)q —

L WY v = s Pa b+ v+ s+ 2]
[0"+v+s =PV +v—si]la+s]+2]'[—v+s5 + 1]
(_1).vg—sé’q(v+x’)(s’l’—sé’)—s[’)'(s]’_’—sg—l)—x’l’

[5y — sglilsg — 331 “2)
Summation oves; givesd,; i, and leads to a partial case ot13b). Otherwise, the double
sum appears after summation owérs;. After the substitution ofj by »” +v+s'—x, the

sum overs’ turns into a balanced one and, finally, we obtain (4.1). Similarly, the sum over
n,s’,s” in (3.13b) may be rearranged fé&r=a” —b'+b—v, orfork =a’+a”" —a—wv, or

for k = a”, respectively. It can also be derived (with the exception of a fixelpendent
factor (—1)"g"@tt'—a"+v+k+2)) after the Regge-type substitutions

a < a+v b < b a'<d+d" —a—v

V' <a—ad+b"+v a<a —v b<b (4.33)
or

a <dad bV <b—v a"<a" —b +b—v

bV < b +b" —b+v a<a bbb +v (4.30)
or

a < a+v bV <b—v a’ < b +v

V' < ad —v a<ad—v bbb +v (4.%)
of

(la+1'a + b+ 2[a'1[d + b + 1 [a"1[b"[a” + b" + 1]1)Y?
xq_RJ\/(ZL];TaX)[a/b’; ab] (fk'"ax|n+’iﬂ‘+)q
respectively, which correspond to the transpositions of the arr@p)(df [27] or (2.8b) of
[18].
Now let us consider the overlap matrices and ‘seed’ isofactols)(Bor the canonical
tensor operators with the minimal null space. Wihend’ — v < 0 in this extremal case the
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summation parametey in (3.1¢) is fixed and the ‘braided’ sum (4.11) of [18] (depending
on three parameters) may be used for summation gvdrarticularly, fork = »” 4+ v the
asymmetric ‘seed’ isofactors (@) may be expressed as follows:

T v N, Q6—(d —v)(d' —v+2) [A+(a+b—b')(a+b—b'+2) JA+(b'+1) (' —b+v)+3[ (1 +1)/2
( n_ . 1q=4q

5 (=1 =2(a + 1][b + 1la + b + 2][p][a’ + b + 1]1)Y/2
./\/'(q’b”“)[a/b/; ab]V[%a/, %b//7 i]([b//]!)l/z[i—i- 21 -]

a’b"

5 ClabIZ][I — 2 [a1[b][a’ + b — v + 1]!
[a—a + V][0 —b+v][a+ 1[0 +1][a+b +v+2]°
Combining (4.4) and (3.17), together with the ‘braided’ sum of the type (5.5) of [18] with

(4.4)

pi=3@-b")-1 p2=3@ —a—-v)—j -1

pa=3@" —a-v)+j"  pa=3@+b")  ps=b—%

gives the overlaps correlated with the symmetric ‘seed’ isofactors and expressed in terms
of the 3¢, type basic hypergeometric series as follows:

T, 50 0g = D T gy o Iy (4.59)
i

_ qQe—(a’—u)(a’—v+2)/4+(a+b—b’)(a+b—b’+2)/4+(b’+1)(b’—b+v)

q (a'=b")(a'=b"—2)/4+ad'b"—b' |2— Q1(a’b'a"b" ab;07)

“T=ol[a—a +o][b —b+ o][a + 1'[b' + 1]
V[%b/7 l'b, j//]H[a//b//j//z//][a/]![b]!

X
[a+b'+v+2IN () )la'b'; ab]

a’'b"

y ([a +1)[a + b+ 2 [a N[ + b +1[2]" + 1] []" + ]! )1/2
[a”]![b”]![a” + b+ 1]![17// _ Z”]!

x Z X{q Q1(b'a’aba”b";j"z")—u(a' +b—v+1) [a/ + a// —d—v— L{]'}

<{[ullla’ —ul[p" = 7" — j" —u][b—b" — v+ u]!
x[p" =7+ —u+ 1.7t (4.50)

Now extremal canonical seed isofactors fQgx = »” + v may be written as follows:

1"y =13

. 4 ~ T
(a/b/Y(/)l(/)a yolo| |tmax; aby])q

~ ~ . _ -1/2
- (T’max|n_,+.;>q<Z(T’m“ln” ‘*>q<Tfm“ln+,;~,+)4) o)
=

~1

— <! —_
(@'b'yoiga"b"y" j"||tmax; abyoio)g

- . -1/2
- <T’mBX|n+,;~,+>q(Z<T’maxm+’f Y (T, ,~w,+>¢,> : (4.7)

"

J
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In both equations (4.6) and (4.7), the renormalization factd(g,{’b’,,)[a’b’; ab] cancel, as

well as some other elementary factors. The sum g¥en the new denominator function
of (4.6) and (4.7) may be rearranged as follows:

DZ(Z;;TM”H)[a/b/; ab] = [a +1]! Z (_1)b”—2/’—ji—x q—j(a+2)
[ +b—v+ 100 ull[b” -2 = 7 = x]
y 0" —x]l[a+b +v+x+2][2]" + 1]V 3b', 3b, j"]
[b" =2 + " —x +1[b— b’ — v+ x][a’ — u]!
Ha"b" "7 q @+t [0’ + 0" —a — v — u!
= —ulb— b — vt ul[b — 2+ ) —ut Al
[@" —v+1)[a + 16 + 1] [a”" + b — v+ 2]!
- [@+b—v+1]
XZ [b—b +a" —v—s]
o [s]la”+b—v+2—5]
(=D)Y == [h — s|[B +b" — b+ v+ 5 + 1]lg*@t2-u@+b-v+D
[x+u+s—b"—v][b/+v—x—s][b—b"—v+x][b'+v—u—s]
[ —=x][a+b +v+x+2a +a" —a—v—u]

(4.89)

x (4.80)
[b—b"—v+ul[a —ulla +a"+b"—a—v—x —u+1]
_[@" —v+1][a+ 1[0 +1][a" + b — v+ 2]'[a’ +a" —v +2]!
N [a —b"+b—v][a +b—v+1]
qn(b+b’+2)7(b"+vfs)(a’+b’+a+b+4)[b — b 4+a" —v— S]![b” _ n]!
X
~ [s]'[b —s[a”+b—v+2—sP[n][b"+v—s5—n]
[a=b"+b—v+nl[b) —b+v+s+n]la+D +v+n+2]
x (4.80)

[@ =b"—v+s+nlla—b+b +v+s+n+2]
We rearranged the very well-poisg@; series of (48a) into the balanced¢s series in
(4.8b) (related to &;-6; coefficient) using Watson'’s formula (2.5.1) of [36] as presented by
(6.10) of [47] with parameters
a—b—-b+1 b—ad —v+2 c—>b+b' —b+v+2
d— b +2 e—>u—>b"—v N—>b +v—x s—>%(b—b’)+]~'”.
Further we replace some factors in84) as follows,
[ —x[a +a" —a—v—ull[b) +b"—b+v+s+1]

[x+u+s—b"—v][a’+a"+b"—a—v—x—u+1]!
— Zq(b”7x+l)(n+u+s7b”71))7(x7n)(a’+a"fa7v7u+1)

[0" —n]' [0 =D+ v+s+n]

[x =nl[n+u+s—0b"—0v]
and after summation over andu obtain (48¢), again rearranging a-version of a special
Kampe de Feriet series. An additional factor

[a+1]!
[@ +b—v+1]!

which is included in definition of (&) is correlated with the Regge-type symmetry of
seed isofactors and ensures a polynomial structure of the new denominator fun@n (4

(4.9
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for ¢ = 1, in a definite analogy with the denominator polynomial as presented by (5.6) of
[23]. Since both summation parameters are restricted by the same multiplicity parameter
(contrary to the denominator function of the maximal null space a/’,;/l)[a/b/; ab]
[18,27]), and all the separate terms are positive, our result may be useful for an extension
of the generic SU(3) denominator function [23] to thg3) canonical tensor operator case.
Note that the definition oD (**=",***")[a'b'; ab] by (4.8¢) in the self-adjoint case is not
strictly correlated with (4.5b) of [18].

In a manner similar to (4.4) and.8b), we may derive the overlagg ' ~***=v|n_ _ p),

and

(fwu”fb’+b7U| 5 ) _ Qet+('—b—d'+v)(b'—b—d' +v—2) /4+(a+v)(a—ad'+b"+v+1)
Ny jr+)a =4

' +1) (B’ —b+v)+(a'—b") (@' —b"—2) /4—a(a+2) /4—a’—b' |2— Q1(a’'b'a"b" ab;0Z)

[—v]a" —a —v][d — b+ v][a — v+ 1]b + 1]

q

V[3b'. 3b. j'1H[a"b" 7" [a + v]![ b]!
[a" + b + 2N (" =) [a'b'; ab)

a’'b"

Ql(b’a’aba”b”; .;'/12//)

xq

5 <[a +1a+ b+ 20 [a e + ' + 112" + 1[j" + 2! )1/2
[a//]![b//]![a// + b// + 1]|[]~// _ Z//]!

I i U [ A Rt (4.10)
— [u]'[a +v —ul[a” + 7" — j" —ull[b —a" + v+ u]! '

forv <0,k =da"—b"+ b —v (which up to a definite extension are related to (4.4) and
(4.5b) by the Regge-type substitution.84)), as well as(T*"|n_, ;), and (T"'|n, ;. ),

or (Te=+¥"+vp_ | g and (T~ +y, -, ), for v > 0. In this and the previous case
all states|n_ , 7), are linearly independent.
Otherwise, forb’ —b +v < O the state$n_ , ;), include some superfluous states. Then
for the maximal values of the summation parametgrin (3.1c) is fixed and the ‘braided’
sum (5.5) of [18] (depending on five parameters) may be used for rearrangement of the sum
over j'. Particularly, fork = a” we take (5.5) of [18] with

pr=3b—a-b—-v)-1  po=—3a+b+b+v)-2
_ 1 / _ 1 7 1 ¥
p3=50b+a—-b —v) pa=3a +1 ps=3a —I1-1

and obtain

(T In_ 4 g = (=D Ha /2] g Qo W +2) v G /4-1/ 241 (T+D)/2

y Tlabl Z]([a + 1][b + 1][a + b + 2][p'][d’ + b + 1]HY/?
N(E&iola'b's ab][a 1 (b)Y [—v]![a’ — a — v]!

V[%b”, %a’, Na+ v [b +v][a+b +v+1]!
X
[b—b —v[a —v+ 1) [b—v+1])[a’+ Db+ v+ 2]

)3 (=1)“q™""[I — 7+ u]![ b — u]!
—~ L[] +Z—ul[b +v—ulla+u+1]"

(4.11)
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Since its direct expansion in terms (Jf+y]7/,.+|n_‘+’i)q does not simplify matters, we first
derive

Ttz g = 3Tl Dy ns_ g
I

— qQe+a’(a’+2)/4+a”(2—a”/4—1)—(a—a”)(a—a”+2)/4—b”—Ql(a’b’a”b”ab;OZ)
(—1)“‘”/F[a’b/l~’2/]([b + 1)[a + b+ 2][21" + 1])¥/?
N(Z,’,Z/,/,)[a/b’; ablV[3a", 3a, I'([a"HY[—v][a’ —a — v]!
5 qQ1(abb”a”a’b’;i’Z’)+f’(f’+1)[a +o]l[b 4+ v][a+ b + v+ 1]
[6—b —v][a —v+1[b—v+1][a’+ b+ v+ 2]
using (31») and summation formula (3.6) of [18] with

(4.123)

p=i-u-1 p2=30-b+v)—-T -1
ps=30 —b+v)+I'  ps=b-73

as well as an elementary summation formula@f. Then in analogy with (%b), using
the overlap coefficient

) Fmion (@b )24 —a + Q1(b ' aba’ b "3 — Q1 (abba"a'b': I’
My o In" ")y =g : JEme

X(_l)i/+2,+;”_2” H[a”b”]j”Z”]V[%b, %b/, {7//]
Hla'b'['71V[3a, 3a", T']
x ([a + 40 a’ + 0 + 1"+ 2N+ 2127 + (21 + 1] )1/2
b+ 1] [ [a” + b" + 1]![]7// _ Z//]![IN/ -
I+ + 3@ =" =@ = b =@ i y—asvy2

X — = 1 = — I (4.13)
[I/ _ j// + E(b// _ a/ + v)][[[/ + j// + E(b// _ a/ + U) + l]l
and (5.5) of [18] with
plz_z/_l pzzé(b”—a'—i-v)—f”—l
p3=%(b”—a/+v)+j~'” p4=b/—2/ p5=%(a+a”)
we obtain
Ty 50 g =Y T gy 50 "),
ir
(_1)11’—[1—1) qQ6+a’(a’+2)/4+a”(a+2—a”/4+1/2)—Ql(a’b’a”h”ah;OZ)
T=u[@ —a—u)[b—b —v][a —v+A[b—v+1]
VIgb 3b. J1H[a"b"j"Za + v]l[ + ]!
[a' 4+ b+ v+ 2N (%5 )[a'b'; ab)
x <[a +1Ma +b + 2 [a]a’ + 5 +12)" + 1 [}" + 2] )1/2
[a”]![b”]![a” 4+ b+ 1]![17// _ Zu]!
—a'=b' |24+ Q1(b'd'aba"b"; j"7" ) —u(a+b'+v+1)
«3 4 —
— [u]l'la+v—ulla” + 27" — j" —ull[b) —a”" + v+ u]!
_ / I _ ]
» [6—b 4+a" —v—u] (4.14)

[a//+2//+]7//_u +1]|
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Similarly, fork = a’' +a” —a — v we derive(T*|n_ . p)q. (T*|nj._ ), and, finally, obtain
q Qe+ad'(a'+2)/4+(a'+a" —a—v)(a'—v+Z—a" /4+1/2)— Q1(a’b'a"b" ab;07)
s jrtda = [—ollla —a + o]l[b — &' — v]'[b — v + 1]!
5 V[%b/, lb, ]7//]H[a//b//j//z//][ar]![b/ + U]'
N @' ab] ([a + 1) a + b + 2]) Y2
5 ([a/]![a/ + b+ 12" + 1] +2] )1/2
[a//]![b//]![a// + b// + 1]|[]// _ Z//]!
—a'—b' J24+01(b'd'aba"b"; "7 ) —u(a' +b' +1)
N Pp— S
— [u]l'la’ —ull[b” —Z" — j" —u]'[b—b" — v + u]!
9 [ +v—u]
[b// 7 +]7// —u+ 1]| ’
Hence, we see that all the
[a//]![b//]![a// + b’ + 1]| 1/2 . L .
NE&m=>)a'b'; ab] (T |y, -,
([a T atb+2lala b)) ¢ N IlabhablTmn, g

are related to one another through similar substitution3a}4(4.3c), which should also

be applied to the denominator function.84). Finally, in analogy with the Regge-type
symmetry of the boundary paracanonical SU(3) isofactors [31], we see that renormalized
extremal (seed) isofactors

(fva’+a”7a7v

(4.15)

(@ b'Tiga"b" 5" J" | |tmax; abYoio)g
([a +1[a + b + 2] [a'][a’ + b’ + 1]")1/2
are also related to one another (up to sign @imhase factors) by substitutions34)—(4.3¢),
as well as through their compositions with the usual transposition of the isofactor parameters

(ab) < (a'b) a’ < b’ v —> —u. (4.17)
The renormalized extremal (seed) isofactors of the maximal null space case

(4.16)

(a/b/yéiéa”b”i”f”||t = 1; abyoio)q
(b +1]'[a + b+ 2] [P ]'[a’ + b + 1]H)1/2
(as presented by (5.14) of [18]) are also invariant (up to sgrpbase factors) under the
same substitutions, as well as the seed isofactors with arbitrary

(4.18)

5. Concluding remarks

In this paper we have demonstrated the importance of the distinctive polynomial and
g-polynomial properties of definite extremal reduced matrix elements of the SU(3) and
U, (3) canonical tensor operators for explicit analytical construction of the orthonormal
‘seed’ and general coupling coefficients with extremal and arbitrary multiplicity label.
The expansion problem of general canonical coupling coefficients in terms of general bi-
orthogonal isofactors with the subscript-type multiplicity label is reduced to an expansion
of extremal reduced matrix elements in terms of the generalized Wilson—Rahman rational
bi-orthogonal functions as balancgfiz(1) and 4¢3(g) hypergeometric series, proportional

to ¢g-6; coefficients with an unusual distribution of the matrix indices. Recall that seed
isofactors usually serve as coefficients for an expansion in terms of general bi-orthogonal
isofactors with the superscript-type multiplicity label. Compositiori§8) of the expansion
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coefficients of both classes as overlaps of the generalized Draayer—Akiyama construction
presents an explicit alternative of overlap22b) of [22] and hence a Gram—Schmidt process
that leads more directly to explicit orthonormal canonical coupling coefficients. We hope
that the derived explicit denominator function of the minimal null space case will permit
one to predict the new version of the general denominator function for canonical SU(3)
tensor operators with a possible extension to th@ucase.
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